cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256798 Numbers whose minimal alternating squares representation has trace 2 or -2.

This page as a plain text file.
%I A256798 #6 Apr 14 2015 11:05:36
%S A256798 2,7,14,18,23,29,34,42,47,50,57,62,67,74,79,82,86,93,98,103,107,114,
%T A256798 119,126,130,137,142,146,151,155,162,167,173,178,182,189,194,202,207,
%U A256798 211,218,223,227,233,238,242,249,254,260,266,271,275,282,287,290,295
%N A256798 Numbers whose minimal alternating squares representation has trace 2 or -2.
%C A256798 The trace of all other positive integers is h^2 or -h^2 for some integer h.  (See A256789 for definitions and A256791 for traces.)
%e A256798 Trace(n) = 2 for n = 7, 14, 23, 34, 47, 62, ..
%e A256798 Trace(n) = -2 for n = 2, 18, 29, 42, 50, 57, 67, ...
%e A256798 Together in increasing order:  2, 7, 14, 18, 23, 29, 34, 42, ...
%t A256798 b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}];
%t A256798 s[n_] := Table[b[n], {k, 1, 2 n - 1}];
%t A256798 h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
%t A256798 g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
%t A256798 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
%t A256798 Table[r[n], {n, 0, 120}]  (* A256789 *)
%t A256798 u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *)
%t A256798 Select[Range[800], Abs[u[[#]]] == 2 &] (* A256798 *)
%Y A256798 Cf. A256789, A256791.
%K A256798 nonn,easy
%O A256798 1,1
%A A256798 _Clark Kimberling_, Apr 13 2015