cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256811 Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.

This page as a plain text file.
%I A256811 #24 Sep 08 2022 08:46:12
%S A256811 37,521,881,1619,2053,2213,2341,3527,3637,3727,4157,5147,7019,10009,
%T A256811 10891,12277,14741,15913,16273,17747,18757,24499,25307,25577,26209,
%U A256811 27073,31481,31517,32833,35083,36739,36791,39079,40231,40949,41039,42013,42461,42767,47917
%N A256811 Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.
%H A256811 K. D. Bajpai, <a href="/A256811/b256811.txt">Table of n, a(n) for n = 1..10000</a>
%e A256811 a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.
%t A256811 Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]
%o A256811 (PARI) forprime(p=1,10^5,if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3),print1(p,", "))) \\ _Derek Orr_, Apr 16 2015
%o A256811 (Magma) [p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3)  and IsPrime((p^4+2) div 3 )]; // _Vincenzo Librandi_, Apr 20 2015
%Y A256811 Cf. A241120, A253941, A253976, A253940.
%K A256811 nonn,easy
%O A256811 1,1
%A A256811 _K. D. Bajpai_, Apr 15 2015