A256813 Number of length n+5 0..1 arrays with at most two downsteps in every 5 consecutive neighbor pairs.
63, 124, 245, 484, 956, 1888, 3728, 7362, 14539, 28712, 56701, 111974, 221128, 436688, 862380, 1703044, 3363203, 6641716, 13116185, 25902088, 51151928, 101015784, 199487860, 393952358, 777984487, 1536378320, 3034068649
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1....1....0....0....0....1....0....1....1....1....0....1....0....1....0....1 ..1....0....1....1....1....0....1....1....0....0....0....0....0....1....0....0 ..0....0....1....1....1....0....0....0....0....1....0....0....1....1....1....0 ..0....0....0....1....0....0....1....0....0....1....0....1....0....1....0....0 ..0....0....0....0....0....0....1....0....1....1....1....1....0....1....1....0 ..1....1....1....0....1....0....0....0....0....0....1....0....1....1....1....1 ..1....0....1....0....0....1....1....0....1....0....1....0....1....0....1....0 ..0....1....1....1....1....0....0....1....1....0....0....0....0....0....1....0 ..1....1....0....0....1....0....0....0....1....0....0....0....1....1....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A256816.
Formula
Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6).
Empirical g.f.: x*(63 - 2*x + 60*x^2 - 8*x^3 + 48*x^4 - 32*x^5) / (1 - 2*x + x^2 - 2*x^3 + x^4 - 2*x^5 + x^6). - Colin Barker, Jan 24 2018
Comments