cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A256813 Number of length n+5 0..1 arrays with at most two downsteps in every 5 consecutive neighbor pairs.

Original entry on oeis.org

63, 124, 245, 484, 956, 1888, 3728, 7362, 14539, 28712, 56701, 111974, 221128, 436688, 862380, 1703044, 3363203, 6641716, 13116185, 25902088, 51151928, 101015784, 199487860, 393952358, 777984487, 1536378320, 3034068649
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Column 5 of A256816.

Examples

			Some solutions for n=4:
..1....1....0....0....0....1....0....1....1....1....0....1....0....1....0....1
..1....0....1....1....1....0....1....1....0....0....0....0....0....1....0....0
..0....0....1....1....1....0....0....0....0....1....0....0....1....1....1....0
..0....0....0....1....0....0....1....0....0....1....0....1....0....1....0....0
..0....0....0....0....0....0....1....0....1....1....1....1....0....1....1....0
..1....1....1....0....1....0....0....0....0....0....1....0....1....1....1....1
..1....0....1....0....0....1....1....0....1....0....1....0....1....0....1....0
..0....1....1....1....1....0....0....1....1....0....0....0....0....0....1....0
..1....1....0....0....1....0....0....0....1....0....0....0....1....1....1....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6).
Empirical g.f.: x*(63 - 2*x + 60*x^2 - 8*x^3 + 48*x^4 - 32*x^5) / (1 - 2*x + x^2 - 2*x^3 + x^4 - 2*x^5 + x^6). - Colin Barker, Jan 24 2018

A256814 Number of length n+6 0..1 arrays with at most two downsteps in every 6 consecutive neighbor pairs.

Original entry on oeis.org

120, 229, 442, 856, 1656, 3204, 6192, 11955, 23088, 44617, 86226, 166620, 321960, 622104, 1202016, 2322567, 4487848, 8671757, 16756074, 32377024, 62560664, 120883084, 233577104, 451331323, 872088416, 1685098737, 3256043394
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Column 6 of A256816.

Examples

			Some solutions for n=4:
..1....1....0....0....1....1....1....0....1....0....1....1....0....0....0....0
..1....0....1....0....0....1....0....1....0....0....0....0....0....1....0....0
..1....0....0....1....0....1....0....1....1....0....0....0....0....0....1....1
..0....0....1....1....1....1....0....0....1....1....0....1....1....0....1....0
..1....0....1....1....0....0....0....0....0....0....1....0....1....0....0....1
..1....1....1....1....1....1....0....0....1....0....0....0....0....0....1....0
..1....0....1....0....1....1....0....1....1....0....0....1....0....1....0....0
..1....1....0....1....0....1....0....0....1....1....1....1....1....0....0....0
..0....0....0....0....0....0....0....1....0....0....0....1....1....0....1....1
..1....0....1....1....0....0....0....0....1....0....0....1....1....1....1....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +3*a(n-6) -2*a(n-7) -6*a(n-9) +4*a(n-10).
Empirical g.f.: x*(120 - 11*x + 104*x^2 - 39*x^3 + 48*x^4 + 93*x^5 - 190*x^6 - 128*x^7 - 250*x^8 + 252*x^9) / ((1 - x)*(1 - x - 2*x^3 - x^4 - x^5 - 4*x^6 - 2*x^7 - 2*x^8 + 4*x^9)). - Colin Barker, Jan 24 2018

A256815 Number of length n+7 0..1 arrays with at most two downsteps in every 7 consecutive neighbor pairs.

Original entry on oeis.org

219, 402, 753, 1424, 2693, 5088, 9613, 18104, 34013, 63928, 120362, 226816, 427341, 804974, 1516179, 2855304, 5376354, 10123582, 19065294, 35907400, 67626166, 127359488, 239852341, 451704432, 850669960, 1602023036, 3017039568
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Column 7 of A256816

Examples

			Some solutions for n=4
..1....0....1....1....0....0....0....1....1....1....1....1....0....0....0....0
..0....0....1....1....0....0....1....1....1....1....1....0....1....1....1....0
..1....0....1....1....1....1....0....1....1....1....0....1....0....1....1....0
..1....0....0....1....1....1....0....1....0....0....1....0....0....1....1....1
..0....1....1....1....0....1....0....0....0....0....0....0....0....1....1....0
..0....1....0....0....1....0....1....0....1....0....0....0....1....0....0....1
..0....0....0....0....1....0....0....0....0....1....1....1....1....0....1....1
..1....1....0....1....0....0....1....0....0....0....1....1....1....1....1....1
..1....1....0....0....1....0....1....1....0....1....1....0....1....1....0....0
..1....0....0....0....1....1....1....1....0....1....1....0....0....0....0....0
..1....0....0....1....1....0....1....1....0....1....0....1....0....0....0....0
		

Crossrefs

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +3*a(n-4) -2*a(n-5) +10*a(n-7) -7*a(n-8) -12*a(n-11) +9*a(n-12) -24*a(n-14) +18*a(n-15)

A256817 Number of length n+2 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

8, 16, 32, 64, 124, 229, 402, 673, 1080, 1670, 2500, 3638, 5164, 7171, 9766, 13071, 17224, 22380, 28712, 36412, 45692, 56785, 69946, 85453, 103608, 124738, 149196, 177362, 209644, 246479, 288334, 335707, 389128, 449160, 516400, 591480, 675068
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 2 of A256816.

Examples

			Some solutions for n=4:
..0....0....1....0....0....0....1....1....0....0....1....0....0....1....0....0
..0....0....1....0....0....1....0....1....1....0....0....1....1....1....0....1
..0....1....1....1....1....0....0....1....0....0....0....0....1....0....0....0
..0....0....1....0....0....0....1....0....1....1....0....1....0....0....0....0
..0....1....0....0....0....1....1....0....1....0....1....0....1....0....0....1
..1....1....0....1....0....1....1....0....0....1....1....1....1....0....0....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (3/8)*n^3 - (1/24)*n^2 + (277/60)*n + 3.
Empirical g.f.: x*(8 - 32*x + 56*x^2 - 48*x^3 + 20*x^4 - 3*x^5) / (1 - x)^6. - Colin Barker, Jan 21 2018

A256818 Number of length n+3 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

16, 32, 64, 128, 245, 442, 753, 1220, 1894, 2836, 4118, 5824, 8051, 10910, 14527, 19044, 24620, 31432, 39676, 49568, 61345, 75266, 91613, 110692, 132834, 158396, 187762, 221344, 259583, 302950, 351947, 407108, 469000, 538224, 615416, 701248
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 3 of A256816.

Examples

			Some solutions for n=4:
..0....1....1....1....1....1....1....0....0....1....0....1....0....1....1....0
..1....1....1....1....1....1....0....1....0....0....1....0....0....1....1....1
..1....1....1....1....1....1....1....0....1....1....0....0....0....0....0....0
..0....0....1....0....1....0....1....1....1....1....0....1....0....1....1....1
..1....0....0....1....1....1....0....1....1....1....1....0....1....0....0....0
..0....0....0....0....1....1....0....1....0....0....0....1....1....0....1....1
..0....1....0....1....1....1....0....0....0....1....0....1....0....0....0....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/12)*n^4 + (31/24)*n^3 - (31/12)*n^2 + (66/5)*n + 4.
Empirical g.f.: x*(16 - 64*x + 112*x^2 - 96*x^3 + 37*x^4 - 4*x^5) / (1 - x)^6. - Colin Barker, Jan 21 2018

A256819 Number of length n+4 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

32, 64, 128, 256, 484, 856, 1424, 2249, 3402, 4965, 7032, 9710, 13120, 17398, 22696, 29183, 37046, 46491, 57744, 71052, 86684, 104932, 126112, 150565, 178658, 210785, 247368, 288858, 335736, 388514, 447736, 513979, 587854, 670007, 761120, 861912
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 4 of A256816.

Examples

			Some solutions for n=4:
..1....1....1....0....0....1....0....1....1....0....0....1....0....0....0....0
..0....0....0....1....0....0....1....1....1....0....0....0....1....0....1....1
..0....1....0....1....0....0....0....0....0....0....1....1....1....0....1....1
..1....1....0....1....1....0....0....0....0....0....0....1....0....0....1....0
..1....0....0....1....1....0....0....1....0....0....0....0....1....1....1....1
..0....0....0....0....1....0....0....0....0....0....0....1....1....1....0....0
..0....0....0....1....0....1....1....0....1....0....0....1....1....0....1....1
..1....1....1....0....1....1....0....1....1....1....1....0....1....0....1....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/8)*n^4 + (27/8)*n^3 - (65/8)*n^2 + (1897/60)*n + 3 for n>2.
Empirical g.f.: x*(32 - 128*x + 224*x^2 - 192*x^3 + 68*x^4 - 4*x^6 + x^7) / (1 - x)^6. - Colin Barker, Jan 21 2018

A256820 Number of length n+5 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

64, 128, 256, 512, 956, 1656, 2693, 4158, 6153, 8792, 12202, 16524, 21914, 28544, 36603, 46298, 57855, 71520, 87560, 106264, 127944, 152936, 181601, 214326, 251525, 293640, 341142, 394532, 454342, 521136, 595511, 678098, 769563, 870608, 981972
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 5 of A256816.

Examples

			Some solutions for n=4:
..0....1....0....0....0....1....0....1....0....1....1....0....1....1....0....1
..0....0....0....1....0....0....0....1....1....0....1....0....0....0....0....0
..0....0....0....0....1....1....0....0....1....1....1....0....1....0....1....1
..1....0....0....0....0....1....1....0....0....1....0....0....1....1....1....0
..1....0....1....1....0....1....1....1....0....0....1....1....1....1....1....1
..0....1....0....0....0....1....1....1....0....1....0....1....0....1....0....1
..1....1....1....1....0....1....0....0....0....0....1....1....1....0....1....0
..1....0....0....1....0....0....0....1....0....0....0....1....0....1....0....1
..1....1....0....0....0....0....1....0....0....1....1....1....1....1....1....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/6)*n^4 + (175/24)*n^3 - (103/6)*n^2 + (747/10)*n - 30 for n>3.
Empirical g.f.: x*(64 - 256*x + 448*x^2 - 384*x^3 + 124*x^4 + 16*x^5 - 7*x^6 - 8*x^7 + 4*x^8) / (1 - x)^6. - Colin Barker, Jan 21 2018

A256821 Number of length n+6 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

128, 256, 512, 1024, 1888, 3204, 5088, 7677, 11120, 15579, 21230, 28264, 36888, 47326, 59820, 74631, 92040, 112349, 135882, 162986, 194032, 229416, 269560, 314913, 365952, 423183, 487142, 558396, 637544, 725218, 822084, 928843, 1046232
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 6 of A256816.

Examples

			Some solutions for n=4:
..0....0....0....1....0....0....1....1....0....1....1....1....1....1....0....0
..1....1....0....0....1....0....1....0....0....0....1....1....1....1....0....0
..0....1....0....0....1....0....0....1....1....1....0....1....1....1....0....0
..0....0....1....1....1....1....1....1....0....1....1....0....1....1....1....0
..0....0....1....1....1....1....1....1....0....1....0....0....1....0....1....0
..1....0....1....0....1....1....0....0....1....0....0....0....1....0....1....1
..0....0....1....1....0....0....0....1....0....1....1....0....0....1....1....0
..1....0....0....1....0....0....1....0....0....1....1....1....0....1....1....1
..1....0....1....0....1....1....1....1....1....0....1....0....1....1....1....0
..0....0....0....1....1....0....0....0....0....1....0....1....0....0....0....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (5/24)*n^4 + (111/8)*n^3 - (701/24)*n^2 + (11767/60)*n - 253 for n>4.
Empirical g.f.: x*(128 - 512*x + 896*x^2 - 768*x^3 + 224*x^4 + 68*x^5 - 24*x^6 - 7*x^7 - 14*x^8 + 10*x^9) / (1 - x)^6. - Colin Barker, Jan 21 2018

A256822 Number of length n+7 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

256, 512, 1024, 2048, 3728, 6192, 9613, 14168, 20075, 27566, 36888, 48304, 62094, 78556, 98007, 120784, 147245, 177770, 212762, 252648, 297880, 348936, 406321, 470568, 542239, 621926, 710252, 807872, 915474, 1033780, 1163547, 1305568
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Row 7 of A256816.

Examples

			Some solutions for n=4:
..0....1....1....1....1....0....1....1....1....1....1....1....0....0....1....1
..1....0....1....1....1....1....0....1....0....1....1....0....0....1....1....1
..1....0....1....0....1....1....1....0....1....0....1....1....0....0....1....1
..1....1....0....0....1....1....1....1....1....1....0....1....0....0....0....0
..0....1....1....0....1....0....1....0....1....0....1....1....1....1....1....1
..1....1....1....0....0....1....0....1....1....1....1....1....1....1....0....0
..1....1....1....0....1....0....0....1....1....0....1....0....0....1....0....0
..0....1....0....0....0....1....0....1....0....0....1....1....1....1....0....0
..1....1....0....0....1....1....0....0....0....1....0....0....1....1....1....1
..1....0....1....1....0....1....1....0....0....0....0....0....0....0....0....0
..1....0....0....0....0....0....1....0....0....1....1....1....1....0....1....0
		

Crossrefs

Cf. A256816.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/4)*n^4 + (193/8)*n^3 - (169/4)*n^2 + (8323/15)*n - 1216 for n>5.
Empirical g.f.: x*(256 - 1024*x + 1792*x^2 - 1536*x^3 + 400*x^4 + 208*x^5 - 35*x^6 - 102*x^7 + 78*x^8 - 64*x^9 + 28*x^10) / (1 - x)^6. - Colin Barker, Jan 21 2018
Showing 1-9 of 9 results.