A256817 Number of length n+2 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.
8, 16, 32, 64, 124, 229, 402, 673, 1080, 1670, 2500, 3638, 5164, 7171, 9766, 13071, 17224, 22380, 28712, 36412, 45692, 56785, 69946, 85453, 103608, 124738, 149196, 177362, 209644, 246479, 288334, 335707, 389128, 449160, 516400, 591480, 675068
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....0....1....0....0....0....1....1....0....0....1....0....0....1....0....0 ..0....0....1....0....0....1....0....1....1....0....0....1....1....1....0....1 ..0....1....1....1....1....0....0....1....0....0....0....0....1....0....0....0 ..0....0....1....0....0....0....1....0....1....1....0....1....0....0....0....0 ..0....1....0....0....0....1....1....0....1....0....1....0....1....0....0....1 ..1....1....0....1....0....1....1....0....0....1....1....1....1....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A256816.
Formula
Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (3/8)*n^3 - (1/24)*n^2 + (277/60)*n + 3.
Empirical g.f.: x*(8 - 32*x + 56*x^2 - 48*x^3 + 20*x^4 - 3*x^5) / (1 - x)^6. - Colin Barker, Jan 21 2018
Comments