This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256832 #15 Feb 14 2022 22:43:36 %S A256832 1,2,10,120,3480,243600,41168400,16796707200,16544756592000, %T A256832 39343431175776000,225870638380130016000,3130567047948602021760000, %U A256832 104751903991408172250111360000,8462068308233934970708495883520000,1650314871813323167662424409683488000000 %N A256832 Product of first n Pell numbers Pell(1), ... , Pell(n). %F A256832 a(n) = Product_{k=1..n} A000129(k). %F A256832 a(n) ~ c * ((1+sqrt(2))^(n*(n+1)/2) / 2^(3*n/2)), where c = A256831 = 1.1419825696677912... . - _Vaclav Kotesovec_, Apr 10 2015 %t A256832 Table[Product[Expand[((1+Sqrt[2])^k-(1-Sqrt[2])^k)/(2*Sqrt[2])],{k,1,n}],{n,1,20}] %t A256832 FoldList[Times,LinearRecurrence[{2,1},{1,2},20]] (* _Harvey P. Dale_, Oct 07 2015 *) %t A256832 FoldList[Times, Fibonacci[Range[20], 2]] (* or *) %t A256832 Table[Round[(1+Sqrt[2])^((n-1)n/2) QFactorial[n, Sqrt[8]-3]], {n, 20}] (* _Vladimir Reshetnikov_, Sep 15 2016 *) %o A256832 (PARI) a(n)=my(q=quadgen(8)+1,Q=q); prod(k=2,n, imag(Q*=q)) \\ _Charles R Greathouse IV_, Feb 14 2022 %Y A256832 Cf. A000129, A256831. %Y A256832 Cf. A003266, A135407, A126772. %K A256832 nonn %O A256832 1,2 %A A256832 _Vaclav Kotesovec_, Apr 10 2015