cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256852 Number of ways to write prime(n) = a^2 + b^4.

This page as a plain text file.
%I A256852 #14 Oct 05 2015 10:12:13
%S A256852 1,0,1,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,
%T A256852 0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,2,0,0,0,1,1,0,0,0,0,0,0,0,2,
%U A256852 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
%N A256852 Number of ways to write prime(n) = a^2 + b^4.
%C A256852 a(A049084(A028916(n))) > 0; a(A049084(A256863(n))) = 0;
%C A256852 Conjecture: a(n) <= 2, empirically checked for the first 10^6 primes.
%C A256852 The conjecture is true, because by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, if a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. - _Jonathan Sondow_, Oct 03 2015
%C A256852 Friedlander and Iwaniec proved that a(n) > 0 infinitely often. - _Jonathan Sondow_, Oct 05 2015
%H A256852 Reinhard Zumkeller, <a href="/A256852/b256852.txt">Table of n, a(n) for n = 1..10000</a>
%H A256852 Art of Problem Solving, <a href="http://www.artofproblemsolving.com/wiki/index.php/Fermat&#39;s_Two_Squares_Theorem">Fermat's Two Squares Theorem</a>
%H A256852 John Friedlander and Henryk Iwaniec, <a href="http://www.pnas.org/cgi/content/full/94/4/1054">Using a parity-sensitive sieve to count prime values of a polynomial</a>, PNAS, vol. 94 no. 4, pp. 1054-1058.
%H A256852 Wikipedia, <a href="http://en.wikipedia.org/wiki/Friedlander%E2%80%93Iwaniec_theorem">Friedlander-Iwaniec theorem</a>
%e A256852 First numbers n, such that a(n) > 0:
%e A256852 .   k |  n |   prime(n)                    | a(n)
%e A256852 . ----+----+-------------------------------+-----
%e A256852 .   1 |  1 |    2 = 1^2 + 1^4              |   1
%e A256852 .   2 |  3 |    5 = 2^2 + 1^4              |   1
%e A256852 .   3 |  7 |   17 = 1^2 + 2^4 = 4^2 + 1^4  |   2
%e A256852 .   4 | 12 |   37 = 6^2 + 1^4              |   1
%e A256852 .   5 | 13 |   41 = 5^2 + 2^4              |   1
%e A256852 .   6 | 25 |   97 = 4^2 + 3^4 = 9^2 + 2^4  |   2
%e A256852 .   7 | 33 |  101 = 10^2 + 1^4             |   1
%e A256852 .   8 | 42 |  181 = 10^2 + 3^4             |   1
%e A256852 .   9 | 45 |  197 = 14^2 + 1^4             |   1
%e A256852 .  10 | 53 |  241 = 15^2 + 2^4             |   1
%e A256852 .  11 | 55 |  257 = 1^2 + 4^4 = 16^2 + 1^4 |   2
%e A256852 .  12 | 59 |  277 = 14^2 + 3^4             |   1
%e A256852 .  13 | 60 |  281 = 5^2 + 4^4              |   1
%e A256852 .  14 | 68 |  337 = 9^2 + 4^4 = 16^2 + 3^4 |   2
%e A256852 .  15 | 79 |  401 = 20^2 + 1^4             |   1
%e A256852 .  16 | 88 |  457 = 21^2 + 2^4             |   1 .
%o A256852 (Haskell)
%o A256852 a256852 n = a256852_list !! (n-1)
%o A256852 a256852_list = f a000040_list [] $ tail a000583_list where
%o A256852    f ps'@(p:ps) us vs'@(v:vs)
%o A256852      | p > v     = f ps' (v:us) vs
%o A256852      | otherwise = (sum $ map (a010052 . (p -)) us) : f ps us vs'
%Y A256852 Cf. A000040, A000290, A000583, A010052, A002645, A028916, A256863.
%K A256852 nonn
%O A256852 1,7
%A A256852 _Reinhard Zumkeller_, Apr 11 2015