This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256860 #22 Apr 10 2020 14:32:03 %S A256860 1,7,33,119,350,882,1974,4026,7623,13585,23023,37401,58604,89012, %T A256860 131580,189924,268413,372267,507661,681835,903210,1181510,1527890, %U A256860 1955070,2477475,3111381,3875067,4788973,5875864,7161000,8672312,10440584,12499641,14886543 %N A256860 a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n^2 - n + 5)/120. %C A256860 This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(n+3)*(k*(n-1)+5)/120, where b(n,k) is the n-th hypersolid number in 5 dimensions generated from an arithmetical progression with the first term 1 and common difference k (see Sardelis et al. paper). %H A256860 D. A. Sardelis and T. M. Valahas, <a href="http://arxiv.org/abs/0805.4070v1">On Multidimensional Pythagorean Numbers</a>, arXiv:0805.4070v1 [math.GM], 2008. %H A256860 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A256860 G.f.: x*(1 + 5*x^2)/(1 - x)^7. %F A256860 a(n) = 5*A000579(n+3) + A000579(n+5). [_Bruno Berselli_, Apr 15 2015] %t A256860 Table[n (n + 1) (n + 2) (n + 3) (n^2 - n + 5)/120, {n, 40}] %o A256860 (PARI) vector(40, n, n*(n+1)*(n+2)*(n+3)*(n^2-n+5)/120) \\ _Bruno Berselli_, Apr 15 2015 %Y A256860 Cf. A000579. %Y A256860 Cf. similar sequences listed in A256859. %K A256860 nonn,easy %O A256860 1,2 %A A256860 _Luciano Ancora_, Apr 14 2015