This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256861 #19 Sep 25 2019 14:23:47 %S A256861 1,8,42,168,546,1512,3696,8184,16731,32032,58058,100464,167076,268464, %T A256861 418608,635664,942837,1369368,1951642,2734424,3772230,5130840,6888960, %U A256861 9140040,11994255,15580656,20049498,25574752,32356808,40625376,50642592,62706336 %N A256861 a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n^2 - n + 6)/720. %C A256861 This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(n+3)*(n+4)*(k*(n-1)+6)/120, where b(n,k) is the n-th hypersolid number in 6 dimensions generated from an arithmetical progression with the first term 1 and common difference k (see Sardelis et al. paper). %H A256861 D. A. Sardelis and T. M. Valahas, <a href="http://arxiv.org/abs/0805.4070">On Multidimensional Pythagorean Numbers</a>, arXiv:0805.4070 [math.GM], 2008. %H A256861 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1). %F A256861 G.f.: x*(1 + 6*x^2)/(1 - x)^8. %F A256861 a(n) = 6*A000580(n+4) + A000580(n+6). [_Bruno Berselli_, Apr 15 2015] %t A256861 Table[n (1 + n) (2 + n) (3 + n) (4 + n) (6 - n + n^2)/720, {n, 40}] %t A256861 Table[Times@@(n+Range[0,4])(n^2-n+6)/720,{n,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,8,42,168,546,1512,3696,8184},40] (* _Harvey P. Dale_, Sep 25 2019 *) %o A256861 (PARI) vector(40, n, n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2-n+6)/720) \\ _Bruno Berselli_, Apr 15 2015 %Y A256861 Cf. A000580. %Y A256861 Cf. similar sequences listed in A256859. %K A256861 nonn,easy %O A256861 1,2 %A A256861 _Luciano Ancora_, Apr 14 2015