This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256892 #21 Jul 16 2025 20:41:19 %S A256892 1,0,1,0,3,1,0,13,9,1,0,73,79,18,1,0,501,755,265,30,1,0,4051,7981, %T A256892 3840,665,45,1,0,37633,93135,57631,13580,1400,63,1,0,394353,1192591, %U A256892 911582,274141,38290,2618,84,1,0,4596553,16645431,15285313,5633922,999831,92358,4494,108,1 %N A256892 Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n. %C A256892 Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016 %F A256892 T(n+1,1) = A000262(n). %F A256892 T(n+1,n) = A045943(n). %F A256892 Row sums are A084357. %e A256892 Triangle starts: %e A256892 1; %e A256892 0, 1; %e A256892 0, 3, 1; %e A256892 0, 13, 9, 1; %e A256892 0, 73, 79, 18, 1; %e A256892 0, 501, 755, 265, 30, 1; %e A256892 0, 4051, 7981, 3840, 665, 45, 1; %p A256892 # The function BellMatrix is defined in A264428. %p A256892 BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # _Peter Luschny_, Jan 29 2016 %t A256892 BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; %t A256892 B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12]; %t A256892 Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *) %o A256892 (SageMath) %o A256892 def Lah(n, k): %o A256892 if n == k: return 1 %o A256892 if k<0 or k>n: return 0 %o A256892 return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1)) %o A256892 matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2) # as a square matrix %Y A256892 See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle. %Y A256892 A079640 is an unsigned matrix inverse reduced to an (1,1)-offset. %Y A256892 Cf. A000262, A045943, A084357, A088729, A088814. %K A256892 nonn,tabl,easy %O A256892 0,5 %A A256892 _Peter Luschny_, Apr 12 2015