cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256892 Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.

This page as a plain text file.
%I A256892 #21 Jul 16 2025 20:41:19
%S A256892 1,0,1,0,3,1,0,13,9,1,0,73,79,18,1,0,501,755,265,30,1,0,4051,7981,
%T A256892 3840,665,45,1,0,37633,93135,57631,13580,1400,63,1,0,394353,1192591,
%U A256892 911582,274141,38290,2618,84,1,0,4596553,16645431,15285313,5633922,999831,92358,4494,108,1
%N A256892 Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.
%C A256892 Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016
%F A256892 T(n+1,1) = A000262(n).
%F A256892 T(n+1,n) = A045943(n).
%F A256892 Row sums are A084357.
%e A256892 Triangle starts:
%e A256892 1;
%e A256892 0,    1;
%e A256892 0,    3,    1;
%e A256892 0,   13,    9,    1;
%e A256892 0,   73,   79,   18,   1;
%e A256892 0,  501,  755,  265,  30,  1;
%e A256892 0, 4051, 7981, 3840, 665, 45, 1;
%p A256892 # The function BellMatrix is defined in A264428.
%p A256892 BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # _Peter Luschny_, Jan 29 2016
%t A256892 BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t A256892 B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12];
%t A256892 Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%o A256892 (SageMath)
%o A256892 def Lah(n, k):
%o A256892     if n == k: return 1
%o A256892     if k<0 or  k>n: return 0
%o A256892     return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
%o A256892 matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2)  # as a square matrix
%Y A256892 See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle.
%Y A256892 A079640 is an unsigned matrix inverse reduced to an (1,1)-offset.
%Y A256892 Cf. A000262, A045943, A084357, A088729, A088814.
%K A256892 nonn,tabl,easy
%O A256892 0,5
%A A256892 _Peter Luschny_, Apr 12 2015