This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256911 #4 Apr 14 2015 16:44:25 %S A256911 1,1,1,1,2,2,1,2,2,2,1,2,2,2,3,1,2,2,2,3,3,1,2,2,2,3,3,2,1,2,2,2,3,3, %T A256911 2,3,1,2,2,2,3,3,2,3,3,1,2,2,2,3,3,2,3,3,3,1,2,2,2,3,3,2,3,3,3,2,1,2, %U A256911 2,2,3,3,2,3,3,3,2,3,1,2,2,2,3,3,2,3 %N A256911 Number of terms in the enhanced triangular-number representation of n. %C A256911 See A256909 for definitions. The least n for which R(n) has 5 terms is given by R(7259) = 7140 + 105 + 10 + 3 + 1. %H A256911 Clark Kimberling, <a href="/A256911/b256911.txt">Table of n, a(n) for n = 0..1000</a> %e A256911 R(4) = 3 + 1, so a(4) = 2. %e A256911 R(119) = 105 + 10 + 3 + 1, so a(119) = 4. %t A256911 b[n_] := n (n + 1)/2; bb = Insert[Table[b[n], {n, 0, 200}], 2, 3] %t A256911 s[n_] := Table[b[n], {k, 1, n + 1}]; %t A256911 h[1] = {0, 1, 2}; h[n_] := Join[h[n - 1], s[n]]; %t A256911 g = h[200]; r[0] = {0}; %t A256911 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; %t A256911 t = Table[r[n], {n, 0, 120}] (*A256909 before concatenation*) %t A256911 Flatten[t] (*A256909*) %t A256911 Table[Last[r[n]], {n, 0, 120}] (*A256910*) %t A256911 Table[Length[r[n]], {n, 0, 120}] (*A256911*) %Y A256911 Cf. A000217, A256909 (representations) A256910 (trace). %K A256911 nonn,easy %O A256911 0,5 %A A256911 _Clark Kimberling_, Apr 14 2015