cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256911 Number of terms in the enhanced triangular-number representation of n.

This page as a plain text file.
%I A256911 #4 Apr 14 2015 16:44:25
%S A256911 1,1,1,1,2,2,1,2,2,2,1,2,2,2,3,1,2,2,2,3,3,1,2,2,2,3,3,2,1,2,2,2,3,3,
%T A256911 2,3,1,2,2,2,3,3,2,3,3,1,2,2,2,3,3,2,3,3,3,1,2,2,2,3,3,2,3,3,3,2,1,2,
%U A256911 2,2,3,3,2,3,3,3,2,3,1,2,2,2,3,3,2,3
%N A256911 Number of terms in the enhanced triangular-number representation of n.
%C A256911 See A256909 for definitions.  The least n for which R(n) has 5 terms is given by R(7259) = 7140 + 105 + 10 + 3 + 1.
%H A256911 Clark Kimberling, <a href="/A256911/b256911.txt">Table of n, a(n) for n = 0..1000</a>
%e A256911 R(4) = 3 + 1, so a(4) = 2.
%e A256911 R(119) = 105 + 10 + 3 + 1, so a(119) = 4.
%t A256911 b[n_] := n (n + 1)/2; bb = Insert[Table[b[n], {n, 0, 200}], 2, 3]
%t A256911 s[n_] := Table[b[n], {k, 1, n + 1}];
%t A256911 h[1] = {0, 1, 2}; h[n_] := Join[h[n - 1], s[n]];
%t A256911 g = h[200]; r[0] = {0};
%t A256911 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]];
%t A256911 t = Table[r[n], {n, 0, 120}] (*A256909 before concatenation*)
%t A256911 Flatten[t]  (*A256909*)
%t A256911 Table[Last[r[n]], {n, 0, 120}]    (*A256910*)
%t A256911 Table[Length[r[n]], {n, 0, 120}]  (*A256911*)
%Y A256911 Cf. A000217, A256909 (representations) A256910 (trace).
%K A256911 nonn,easy
%O A256911 0,5
%A A256911 _Clark Kimberling_, Apr 14 2015