This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256915 #8 Apr 15 2015 13:30:43 %S A256915 1,1,1,1,1,2,2,2,3,1,2,2,2,2,3,3,1,2,2,2,2,3,3,3,4,1,2,2,2,2,3,3,3,4, %T A256915 2,3,1,2,2,2,2,3,3,3,4,2,3,3,3,1,2,2,2,2,3,3,3,4,2,3,3,3,3,4,1,2,2,2, %U A256915 2,3,3,3,4,2,3,3,3,3,4,4,2,1,2,2,2,2 %N A256915 Length of the enhanced squares representation of n. %C A256915 See A256913 for definitions. %H A256915 Clark Kimberling, <a href="/A256915/b256915.txt">Table of n, a(n) for n = 0..1000</a> %e A256915 R(0) = 0, so length = 1. %e A256915 R(1) = 1, so length = 1. %e A256915 R(8) = 4 + 3 + 1, so length = 3. %e A256915 R(7224) = 7056 + 144 + 16 + 4 + 3 + 1, so length = 6. %t A256915 b[n_] := n^2; bb = Insert[Table[b[n], {n, 0, 100}] , 2, 3]; %t A256915 s[n_] := Table[b[n], {k, 1, 2 n + 1}]; %t A256915 h[1] = {0, 1, 2, 3}; h[n_] := Join[h[n - 1], s[n]]; %t A256915 g = h[100]; Take[g, 100] %t A256915 r[0] = {0}; r[1] = {1}; r[2] = {2}; r[3] = {3}; r[8] = {4, 3, 1}; %t A256915 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; %t A256915 t = Table[r[n], {n, 0, 120}] (* A256913, before concatenation *) %t A256915 Flatten[t] (* A256913 *) %t A256915 Table[Last[r[n]], {n, 0, 120}] (* A256914 *) %t A256915 Table[Length[r[n]], {n, 0, 200}] (* A256915 *) %o A256915 (Haskell) %o A256915 a256915 = length . a256913_row -- _Reinhard Zumkeller_, Apr 15 2015 %Y A256915 Cf. A000290, A256913, A256914 (trace). %Y A256915 Cf. A257071. %K A256915 nonn,easy %O A256915 0,6 %A A256915 _Clark Kimberling_, Apr 14 2015