This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256917 #37 Mar 06 2024 11:18:23 %S A256917 2,3,7,17,19,31,71,73,97,127,163,199,241,337,449,577,647,881,883,967, %T A256917 1151,1153,1249,1459,1567,1801,2179,2311,2591,2593,2887,3041,3361, %U A256917 3527,3529,3697,4049,4051,4231,4801,4999,5407,6271,6961,7687,7937,8191,8713,9521,10369,10657 %N A256917 Primes which are not the sums of two consecutive nonsquares. %C A256917 The union of 2 and A066436 and A090698. %C A256917 The sums of two consecutive nonsquares are 5, 8, 11, 13, 15, 18, 21, 23, 25, 27, 29, 32, 35, 37, ... %H A256917 Colin Barker and Charles R Greathouse IV, <a href="/A256917/b256917.txt">Table of n, a(n) for n = 1..10000</a> (first 800 terms from Barker) %e A256917 2, 3, 7 are in this sequence because first three sums of two consecutive nonsquares are 5, 8, 11 and 2, 3, 7 are primes. %t A256917 Union[{2},Select[Table[2n^2-1,{n,0,1000}],PrimeQ],Select[Table[2n^2+1,{n,0,1000}],PrimeQ]] (* _Ivan N. Ianakiev_, Apr 24 2015 *) %t A256917 Module[{nn=11000,ns},ns=Total/@Partition[Select[Range[nn],!IntegerQ[Sqrt[#]]&],2,1]; Complement[ Prime[Range[PrimePi[Last[ns]]]],ns]] (* _Harvey P. Dale_, Mar 06 2024 *) %o A256917 (PARI) %o A256917 a256917(maxp) = { %o A256917 ps=[2]; %o A256917 k=1; while((t=2*k^2-1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t]))); %o A256917 k=1; while((t=2*k^2+1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t]))); %o A256917 ps %o A256917 } %o A256917 a256917(11000) \\ _Colin Barker_, Apr 23 2015 %o A256917 (PARI) list(lim)=my(v=List([2]),t); for(k=2,sqrtint((lim+1)\2), if(isprime(t=2*k^2-1), listput(v,t))); for(k=1,sqrtint((lim-1)\2), if(isprime(t=2*k^2+1), listput(v,t))); Set(v) \\ _Charles R Greathouse IV_, Apr 23 2015 %Y A256917 Cf. A000037, A066436, A090698, A154670. %K A256917 nonn,easy %O A256917 1,1 %A A256917 _Juri-Stepan Gerasimov_, Apr 23 2015