A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1).
0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1
Offset: 0
Examples
0.0866629762657094129329746026249997547771718667980916672... = -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...
References
- H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.
Links
- V. S. Adamchik, H. M. Srivastava, Some series of Zeta and related functions, Analysis (Munich) 18 (2) (1998) 131-144, eq. (2.25).
- Eric Weisstein's MathWorld, Riemann Zeta Function
- Wikipedia, Riemann Zeta Function
Programs
-
Mathematica
Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]
Formula
Equals 7/8 - (Pi/4)*coth(Pi).
Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020
Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021