cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256930 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(3/4)^(2*k).

This page as a plain text file.
%I A256930 #17 Feb 16 2025 08:33:25
%S A256930 1,2,0,3,6,2,1,4,0,3,6,7,7,5,9,1,9,0,1,4,1,2,8,2,4,4,0,6,0,8,8,3,1,9,
%T A256930 5,6,4,1,8,1,5,3,5,1,6,9,1,9,7,6,7,8,1,4,2,0,6,7,2,9,7,3,9,0,8,6,9,5,
%U A256930 4,1,6,3,0,1,4,8,8,9,2,9,7,3,2,4,8,4,4,4,0,3,4,5,9,4,5,9,3,7,6,5,1,7,6,9,7,7,6
%N A256930 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(3/4)^(2*k).
%D A256930 H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (31).
%H A256930 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.
%H A256930 Wikipedia, <a href="http://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann zeta function</a>.
%F A256930 Equals log(Gamma(1/4)*Gamma(7/4)).
%F A256930 Equals log(3*Pi/(2*sqrt(2))).
%e A256930 1.2036214036775919014128244060883195641815351691976781420672...
%t A256930 RealDigits[Log[3*Pi/(2*Sqrt[2])], 10, 107] // First
%o A256930 (PARI) log(3*Pi/(2*sqrt(2))) \\ _Michel Marcus_, Apr 13 2015
%Y A256930 Cf. A068466, A203130, A256929.
%K A256930 nonn,cons,easy
%O A256930 1,2
%A A256930 _Jean-François Alcover_, Apr 13 2015
%E A256930 Name corrected by _Amiram Eldar_, Oct 12 2024