A256936 Decimal expansion of Sum_{k>=1} phi(k)/2^k, where phi is Euler's totient function.
1, 3, 6, 7, 6, 3, 0, 8, 0, 1, 9, 8, 5, 0, 2, 2, 3, 5, 0, 7, 9, 0, 5, 0, 8, 1, 4, 6, 2, 1, 3, 0, 8, 8, 1, 3, 9, 0, 7, 4, 8, 9, 1, 9, 9, 8, 9, 6, 2, 7, 9, 4, 8, 5, 2, 9, 5, 6, 5, 9, 8, 4, 6, 3, 7, 6, 2, 1, 5, 6, 7, 1, 0, 3, 9, 7, 6, 6, 8, 7, 4, 4, 5, 5, 0, 3, 7, 9, 0, 0, 7, 0, 5, 4, 2, 8, 2, 8, 0
Offset: 1
Examples
1.36763080198502235079050814621308813907489199896...
References
- Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, p. 139.
Links
- Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique, L'enseignement Mathématique, Université de Genève, 1980, p. 61.
- Eric Weisstein's MathWorld, Totient Function.
- Wikipedia, Euler's totient function.
Programs
-
Mathematica
digits = 99; m0 = 10; dd = 10; Clear[f]; f[m_] := f[m] = Sum[EulerPhi[n]/2^n, {n, 1, m}] // N[#, digits + 2*dd]&; f[m = m0] ; While[RealDigits[f[2*m], 10, digits + dd ] != RealDigits[f[m], 10, digits + dd ], m = 2*m; Print[m]]; RealDigits[f[m], 10, digits] // First
-
PARI
suminf(n=1,eulerphi(n)/2^n) \\ Charles R Greathouse IV, Apr 20 2016
Formula
Equals Sum_{k>=1} A007431(k)/(2^k - 1). - Amiram Eldar, Jun 23 2020