cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256936 Decimal expansion of Sum_{k>=1} phi(k)/2^k, where phi is Euler's totient function.

Original entry on oeis.org

1, 3, 6, 7, 6, 3, 0, 8, 0, 1, 9, 8, 5, 0, 2, 2, 3, 5, 0, 7, 9, 0, 5, 0, 8, 1, 4, 6, 2, 1, 3, 0, 8, 8, 1, 3, 9, 0, 7, 4, 8, 9, 1, 9, 9, 8, 9, 6, 2, 7, 9, 4, 8, 5, 2, 9, 5, 6, 5, 9, 8, 4, 6, 3, 7, 6, 2, 1, 5, 6, 7, 1, 0, 3, 9, 7, 6, 6, 8, 7, 4, 4, 5, 5, 0, 3, 7, 9, 0, 0, 7, 0, 5, 4, 2, 8, 2, 8, 0
Offset: 1

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			1.36763080198502235079050814621308813907489199896...
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, p. 139.

Crossrefs

Programs

  • Mathematica
    digits = 99; m0 = 10; dd = 10; Clear[f]; f[m_] := f[m] = Sum[EulerPhi[n]/2^n, {n, 1, m}] // N[#, digits + 2*dd]&; f[m = m0] ; While[RealDigits[f[2*m], 10, digits + dd ] != RealDigits[f[m], 10, digits + dd ], m = 2*m; Print[m]]; RealDigits[f[m], 10, digits] // First
  • PARI
    suminf(n=1,eulerphi(n)/2^n) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals Sum_{k>=1} A007431(k)/(2^k - 1). - Amiram Eldar, Jun 23 2020