cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256942 Number of odd squarefree numbers <= 2^n.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 26, 52, 105, 209, 415, 830, 1661, 3321, 6641, 13279, 26565, 53123, 106237, 212488, 424973, 849945, 1699889, 3399761, 6799540, 13599124, 27198203, 54396423, 108792774, 217585510, 435171212, 870342371, 1740684723, 3481369358, 6962738693, 13925477442
Offset: 0

Views

Author

Robert Israel, Apr 13 2015

Keywords

Comments

Number of oddly squarefree (A122132) numbers in each new tier > 2^(n-1). - Travis Scott, Jan 14 2023
a(n) is also the number of even squarefree numbers <= 2^(n+1). - Amiram Eldar, Feb 20 2023

Examples

			For n=4 there are 7 odd squarefree numbers <= 2^4, namely 1,3,5,7,11,13,15.
For oddly squarefree we have 2^3 < 10,11,12,13,14,15,16 <= 2^4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; local L ; L := convert(n, base, 2) ; (2*n - add( L[i]*(-1)^i, i=1..nops(L)))/3 ; end proc:
    a:= n -> add(numtheory:-mobius(i)*g(floor(2^n/i^2)),i=1..floor(2^(n/2))):
    seq(a(n),n=0..32);
  • Mathematica
    A143658[n_] := Sum[MoebiusMu[i] Floor[2^n/i^2], {i, 1, 2^(n/2)}];
    a[n_] := Sum[(-1)^j A143658[n-j], {j, 0, n}];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Sep 22 2022 *)

Formula

a(n) = Sum_{j=0..n} (-1)^j*A143658(n-j).
a(n) = (2/3) * A143658(n) + (1/3) * Sum_{i=1..floor(2^(n/2))} A008683(i)*A065359(floor(2^n/i^2)).
a(n) + a(n+1) = A143658(n+1).
a(n) ~ 2^(n+2)/Pi^2. - Amiram Eldar, Feb 20 2023

Extensions

a(33)-a(35) from Amiram Eldar, Feb 20 2023