A256942 Number of odd squarefree numbers <= 2^n.
1, 1, 2, 4, 7, 13, 26, 52, 105, 209, 415, 830, 1661, 3321, 6641, 13279, 26565, 53123, 106237, 212488, 424973, 849945, 1699889, 3399761, 6799540, 13599124, 27198203, 54396423, 108792774, 217585510, 435171212, 870342371, 1740684723, 3481369358, 6962738693, 13925477442
Offset: 0
Keywords
Examples
For n=4 there are 7 odd squarefree numbers <= 2^4, namely 1,3,5,7,11,13,15. For oddly squarefree we have 2^3 < 10,11,12,13,14,15,16 <= 2^4.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..73 (terms 0..64 from Amiram Eldar)
Programs
-
Maple
g:= proc(n) option remember; local L ; L := convert(n, base, 2) ; (2*n - add( L[i]*(-1)^i, i=1..nops(L)))/3 ; end proc: a:= n -> add(numtheory:-mobius(i)*g(floor(2^n/i^2)),i=1..floor(2^(n/2))): seq(a(n),n=0..32);
-
Mathematica
A143658[n_] := Sum[MoebiusMu[i] Floor[2^n/i^2], {i, 1, 2^(n/2)}]; a[n_] := Sum[(-1)^j A143658[n-j], {j, 0, n}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Sep 22 2022 *)
Formula
Extensions
a(33)-a(35) from Amiram Eldar, Feb 20 2023
Comments