This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256957 #18 Oct 28 2024 15:45:14 %S A256957 11,131,2,5,10301,16361,10281118201,35605550653,7159123219517, %T A256957 17401539893510471,3205657651567565023,14736384418081448363741 %N A256957 Smallest palindromic prime that generates a palindromic prime pyramid of height n. %C A256957 Start with a palindromic prime p; look for smallest palindromic prime that has previous term as a centered substring and has 2 more digits (i.e., one more digit at each end); repeat until no such palindromic prime can be found; then height(p) = number of rows in pyramid. Each row of pyramid must be the smallest prime that can be used. Then a(n) = smallest value of p that generates a pyramid of height n. %H A256957 G. L. Honaker, Jr. and Chris K. Caldwell, <a href="http://www.utm.edu/staff/caldwell/preprints/jrm_prime_pyramids.pdf">Palindromic prime pyramids</a> %H A256957 Ivars Peterson's MathTrek, <a href="https://www.sciencenews.org/article/primes-palindromes-and-pyramids">Primes, Palindromes, and Pyramids</a> %H A256957 Chai Wah Wu, <a href="http://arxiv.org/abs/1503.08883">On a conjecture regarding primality of numbers constructed from prepending and appending identical digits</a>, arXiv:1503.08883 [math.NT], 2015. %e A256957 a(1) = 11. %e A256957 a(4) = 5: %e A256957 5 %e A256957 151 %e A256957 31513 %e A256957 3315133, stop; %e A256957 height(5)=4. %e A256957 a(6)=16362: %e A256957 16361 %e A256957 1163611 %e A256957 311636113 %e A256957 33116361133 %e A256957 3331163611333 %e A256957 333311636113333, stop; %e A256957 height(16361)=6. %Y A256957 Cf. A034276, A052205, A053600. %K A256957 nonn,base,more %O A256957 1,1 %A A256957 _Felice Russo_, Jan 25 2000 %E A256957 Added a(10)-a(11) and corrected a(4) - _Chai Wah Wu_, Apr 09 2015 %E A256957 Entry revised by _N. J. A. Sloane_, Apr 13 2015 %E A256957 a(12) from _Michael S. Branicky_, Oct 28 2024