cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256965 Decimal expansion of sqrt(2) + sqrt(3/2).

This page as a plain text file.
%I A256965 #39 Dec 24 2024 11:35:06
%S A256965 2,6,3,8,9,5,8,4,3,3,7,6,4,6,8,4,0,9,7,9,0,0,3,3,0,7,6,1,5,6,2,6,4,3,
%T A256965 7,7,4,5,5,2,6,4,5,6,1,5,7,0,5,2,8,3,1,3,7,3,9,3,0,2,6,0,2,1,6,1,6,2,
%U A256965 1,2,6,6,7,1,9,0,7,6,4,5,5,2,1,2,0,3,1,7,2,5,0,8,7,9,9
%N A256965 Decimal expansion of sqrt(2) + sqrt(3/2).
%C A256965 Conjectured minimal length of fence ensuring privacy of a square garden.
%D A256965 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.11, p. 517.
%H A256965 Vincenzo Librandi, <a href="/A256965/b256965.txt">Table of n, a(n) for n = 1..5000</a>
%H A256965 Bernd Kawohl, <a href="http://dx.doi.org/10.1007/978-3-0348-8942-1_27">The opaque square and the opaque circle</a>, in: General Inequalities VII, Int. Ser. Numer. Math. 123 (1997), pp. 339-346.
%H A256965 Bernd Kawohl, <a href="http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/kawohl/springercime.ps">Some nonconvex shape optimization problems</a>, in: Optimal Shape Design, Eds. A.Cellina u. A. Ornelas, Springer Lecture Notes in Math.1740 (2000), pp. 7-46.
%H A256965 Ian Stewart, <a href="http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/various/Bilder/PolygonalPrivacy.pdf">Pursuing Polygonal Privacy</a>, Mathematical Recreations Column, Scientific American, 284 (No. 2, 2001), 88-89.
%e A256965 2.6389584337646840979003307615626437745526456157052831373930...
%t A256965 RealDigits[Sqrt[2] + Sqrt[3/2], 10, 110][[1]] (* _Vincenzo Librandi_, Aug 21 2016 *)
%o A256965 (PARI) sqrt(2)+sqrt(3/2) \\ _Michel Marcus_, Dec 20 2015
%o A256965 (Magma) SetDefaultRealField(RealField(100)); Sqrt(2) + Sqrt(3/2); // _G. C. Greubel_, Aug 19 2018
%Y A256965 Cf. A090388.
%K A256965 nonn,cons
%O A256965 1,1
%A A256965 _N. J. A. Sloane_, Apr 16 2015