A256977 G.f.: (1 + 5*x + 5*x^2 + x^3)/Product_{i=1..10} (1 - x^i).
1, 6, 12, 19, 31, 49, 74, 110, 159, 226, 317, 437, 590, 789, 1043, 1364, 1769, 2275, 2899, 3670, 4612, 5758, 7145, 8814, 10812, 13202, 16040, 19396, 23354, 28006, 33447, 39801, 47188, 55753, 65659, 77083, 90216, 105288, 122530, 142211
Offset: 0
Keywords
References
- J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is G(t) at the foot of page 123.
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 3, -2, 3, -1, 1, -1, 0, -1, 0, -1, -2, 2, -2, 3, -2, 4, -2, 3, -2, 2, -2, -1, 0, -1, 0, -1, 1, -1, 3, -2, 3, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 2, -1).
Programs
-
Maple
(1+5*x+5*x^2+x^3)/mul(1-x^i,i=1..10);