This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256978 #14 Apr 25 2019 23:13:51 %S A256978 1,1,1,1,1,3,7,3,1,1,7,29,31,29,7,1,1,15,101,195,321,195,101,15,1,1, %T A256978 31,327,1001,2507,2661,2507,1001,327,31,1,1,63,1023,4641,16479,26481, %U A256978 37759,26481,16479,4641,1023,63,1,1,127,3145,20343,98289,221775,439105,461455,439105,221775,98289,20343,3145,127,1 %N A256978 Irregular triangle read by rows: coefficients of polynomials related to Stirling permutations. %H A256978 Shi-Mei Ma and Toufik Mansour, <a href="http://arxiv.org/abs/1409.6525">The 1/k-Eulerian polynomials and k-Stirling permutations</a>, arXiv preprint, arXiv:1409.6525 [math.CO], 2014. See polynomials C_n(x). %H A256978 Shi-Mei Ma and Toufik Mansour, <a href="https://doi.org/10.1016/j.disc.2015.03.015">The 1/k-Eulerian polynomials and k-Stirling permutations</a>, Discrete Mathematics, Volume 338, Issue 8, 2015, 1468-1472. %H A256978 Shi-Mei Ma, Yeong-Nan Yeh, <a href="https://arxiv.org/abs/1904.11437">The alternating run polynomials of permutations</a>, arXiv:1904.11437 [math.CO], 2019. See p. 9. %F A256978 E.g.f.: (exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1. - _Franck Maminirina Ramaharo_, Feb 05 2019 %e A256978 Triangle begins: %e A256978 n\k | 1 2 3 4 5 6 7 8 9 10 11 %e A256978 ----+----------------------------------------------- %e A256978 1 | 1 %e A256978 2 | 1 1 1 %e A256978 3 | 1 3 7 3 1 %e A256978 4 | 1 7 29 31 29 7 1 %e A256978 5 | 1 15 101 195 321 195 101 15 1 %e A256978 6 | 1 31 327 1001 2507 2661 2507 1001 327 31 1 %e A256978 ... %o A256978 (Maxima) %o A256978 gf : taylor((exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1, z, 0, 50)$ %o A256978 row(x, n) := n!*ratcoef(gf, z, n)$ %o A256978 create_list(ratcoef(row(x, n), x, k), n, 1, 20, k, 1, hipow(row(x, n), x)); %o A256978 /* _Franck Maminirina Ramaharo_, Feb 05 2019 */ %Y A256978 Cf. A185410. %K A256978 nonn,tabf %O A256978 1,6 %A A256978 _N. J. A. Sloane_, Apr 23 2015 %E A256978 More terms from _Franck Maminirina Ramaharo_, Feb 05 2019