This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256995 #13 Apr 19 2015 00:53:54 %S A256995 2,3,5,4,8,6,7,15,10,9,11,26,18,16,12,19,49,34,31,22,13,35,95,66,57, %T A256995 41,23,14,67,184,130,110,79,42,25,17,131,364,258,215,153,81,47,32,20, %U A256995 259,723,514,424,302,159,89,63,38,21,515,1440,1026,844,599,312,174,120,73,39,24,1027,2876,2050,1683,1192,620,343,236,143,74,46,27 %N A256995 Square array A(row,col) read by antidiagonals: A(row,1) = A055938(row), and for col > 1, A(row,col) = A005187(A(row,col-1)). %C A256995 The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc. %C A256995 This is transpose of array A256997. %C A256995 If we assume that a(1) = 1 (but which is not explicitly included here because outside of the array proper), then A256996 gives the inverse permutation. %H A256995 Antti Karttunen, <a href="/A256995/b256995.txt">Table of n, a(n) for n = 2..10441; the first 144 antidiagonals of square array</a> %F A256995 A(row,1) = A055938(row), and for col > 1, A(row,col) = A005187(A(row,col-1)). %e A256995 The top left corner of the array: %e A256995 2, 3, 4, 7, 11, 19, 35, 67, 131, 259, 515, 1027 %e A256995 5, 8, 15, 26, 49, 95, 184, 364, 723, 1440, 2876, 5745 %e A256995 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194 %e A256995 9, 16, 31, 57, 110, 215, 424, 844, 1683, 3360, 6716, 13425 %e A256995 12, 22, 41, 79, 153, 302, 599, 1192, 2380, 4755, 9504, 19004 %e A256995 13, 23, 42, 81, 159, 312, 620, 1235, 2464, 4924, 9841, 19675 %e A256995 14, 25, 47, 89, 174, 343, 680, 1356, 2707, 5408, 10812, 21617 %e A256995 17, 32, 63, 120, 236, 467, 928, 1852, 3697, 7387, 14765, 29521 %e A256995 20, 38, 73, 143, 281, 558, 1111, 2216, 4428, 8851, 17696, 35388 %e A256995 21, 39, 74, 145, 287, 568, 1132, 2259, 4512, 9020, 18033, 36059 %e A256995 ... %o A256995 (Scheme) %o A256995 (define (A256995 n) (if (<= n 1) n (A256995bi (A002260 (- n 1)) (A004736 (- n 1))))) %o A256995 (define (A256995bi row col) (if (= 1 col) (A055938 row) (A005187 (A256995bi row (- col 1))))) %Y A256995 Inverse permutation: A256996. %Y A256995 Transpose: A256997. %Y A256995 Cf. A005187, A055938 (column 1), A256994 (row 1), A256989 (column index), A256990 (row index). %Y A256995 Cf. also A254105, A255555 (variants), A114537, A246279 (other thematically similar constructions). %K A256995 nonn,tabl %O A256995 2,1 %A A256995 _Antti Karttunen_, Apr 14 2015