This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257005 #26 Jun 09 2025 00:53:58 %S A257005 1,2,2,1,3,5,4,1,3,1,4,2,5,2,5,4,2,1,6,4,7,6,4,11,6,3,5,1,1,6,2,2,1, %T A257005 10,3,7,8,2,9,7,6,3,2,1,11,9,7,8,5,8,2,8,4,2,21,10,7,7,1,8,4,2,1,10,4, %U A257005 3,1,9,5,12,6 %N A257005 Irregular triangle read by rows: period lengths of periods of Zagier-reduced binary quadratic forms with discriminants D(n) = A079896(n). %C A257005 The possible positive nonsquare discriminants of binary quadratic forms are given in A079896. %C A257005 For the definition of Zagier-reduced binary quadratic forms, see A257003. %C A257005 The row sums give A257003(n), the number of Zagier-reduced forms of discriminant D(n). %C A257005 The number of entries in row n is A256945(n), the class number of primitive forms of discriminant D(n). %D A257005 D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981. %F A257005 a(n,k), n >= 1, k = 1, 2, ..., A256945(n), is the length of the k-th period of the Zagier-reduced forms for discriminant D(n) = A079896(n). The lengths in row n are organized in nonincreasing order. %e A257005 The table a(n,k) begins: %e A257005 n/k 1 2 3 4 ... D(n) A256945(n) A257003(n) %e A257005 1: 1 5 1 1 %e A257005 2: 2 8 1 2 %e A257005 3: 2 1 12 2 3 %e A257005 4: 3 13 1 3 %e A257005 5: 5 17 1 5 %e A257005 6: 4 1 20 2 5 %e A257005 7: 3 1 21 2 4 %e A257005 8: 4 2 24 2 6 %e A257005 9: 5 2 28 2 7 %e A257005 10: 5 29 1 5 %e A257005 11: 4 2 1 32 3 7 %e A257005 12: 6 4 33 2 10 %e A257005 13: 7 37 1 7 %e A257005 14: 6 4 40 2 10 %e A257005 15: 11 41 1 11 %e A257005 16: 6 3 44 2 9 %e A257005 17: 5 1 1 45 3 7 %e A257005 18: 6 2 2 1 48 4 11 %e A257005 19: 10 3 52 2 13 %Y A257005 Cf. A257003, A257006, A256945, A225953, A079896. %K A257005 nonn,tabf %O A257005 1,2 %A A257005 _Barry R. Smith_, Apr 19 2015 %E A257005 Offset corrected by _Robin Visser_, Jun 08 2025