This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257006 #18 Jun 09 2025 00:53:53 %S A257006 1,2,2,1,3,5,4,3,1,4,2,5,2,5,4,1,6,4,7,6,4,11,6,3,5,1,6,2,10,7,8,2,9, %T A257006 7,6,3,2,1,11,9,7,8,8,2,8,4,21,10,7,7,1,8,2,10,4,9,5,12,6 %N A257006 Irregular triangle read by rows: period lengths of periods of primitive Zagier-reduced binary quadratic forms with discriminants D(n) = A079896(n). %C A257006 The possible positive nonsquare discriminants of binary quadratic forms are given in A079896. %C A257006 For the definition of Zagier-reduced binary quadratic forms, see A257003. %C A257006 A form is primitive if its coefficients are relatively prime. %C A257006 The row sums give A257004(n), the number of primitive Zagier-reduced forms of discriminant D(n). %C A257006 The number of entries in row n is A087048(n), the class number of primitive forms of discriminant D(n). %D A257006 D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981. %F A257006 a(n,k), n >= 1, k = 1, 2, ..., A079896(n), is the length of the k-th period of the primitive Zagier-reduced forms of discriminant D(n) = A079896(n). The lengths in row n are organized in nonincreasing order. %e A257006 The table a(n,k) begins: %e A257006 n/k 1 2 ... D(n) A087048(n) A257004(n) %e A257006 1: 1 5 1 1 %e A257006 2: 2 8 1 2 %e A257006 3: 2 1 12 2 3 %e A257006 4: 3 13 1 3 %e A257006 5: 5 17 1 5 %e A257006 6: 4 20 1 4 %e A257006 7: 3 1 21 2 4 %e A257006 8: 4 2 24 2 6 %e A257006 9: 5 2 28 2 7 %e A257006 10: 5 29 1 5 %e A257006 11: 4 1 32 2 5 %e A257006 12: 6 4 33 2 10 %e A257006 13: 7 37 1 7 %e A257006 14: 6 4 40 2 10 %e A257006 15: 11 41 1 11 %e A257006 16: 6 3 44 2 9 %e A257006 17: 5 1 45 2 6 %e A257006 18: 6 2 48 2 8 %e A257006 19: 10 52 1 10 %Y A257006 Cf. A257004, A257005, A079896, A225953, A079896. %K A257006 nonn,tabf %O A257006 1,2 %A A257006 _Barry R. Smith_, Apr 20 2015 %E A257006 Offset corrected by _Robin Visser_, Jun 08 2025