A257008 Number of Zagier-reduced binary quadratic forms of discriminant n^2+4.
1, 2, 3, 5, 5, 10, 7, 13, 14, 16, 12, 31, 13, 24, 29, 38, 17, 44, 26, 47, 46, 34, 30, 90, 34, 56, 49, 63, 39, 106, 40, 87, 77, 70, 57, 139, 55, 58, 89, 149, 52, 138, 52, 136, 123, 92, 69, 223, 84, 104, 146, 111, 62, 218, 94, 214, 121, 132, 96, 296
Offset: 1
Keywords
Examples
For n=4, the a(4) = 5 Zagier-reduced forms of discriminant 20 are x^2 + 6*x*y + 4*y^2, 4*x^2 + 6*x*y + y^2, 4*x^2 + 10*x*y + 5*y^2, 5*x^2 + 10*x*y + 4*y^2, and 2*x^2 + 6*x*y + 2*y^2
References
- D. B. Zagier, Zetafunktionen und quadratische Korper, Springer, 1981.
Links
- B. R. Smith, Reducing quadratic forms by kneading sequences J. Int. Seq., 17 (2014) 14.11.8.
- B. R. Smith, End-symmetric continued fractions and quadratic congruencesActa Arith., 167 (2015) 173-187.
Programs
-
Mathematica
Table[Length[ Flatten[ Select[ Table[{a, k}, {k, Select[Range[Ceiling[-Sqrt[n]], Floor[Sqrt[n]]], Mod[# - n, 2] == 0 &]}, {a, Select[Divisors[(n - k^2)/4], # > (Sqrt[n] - k)/2 &]}], UnsameQ[#, {}] &], 1]], {n, Map[#^2 + 4 &, Range[3, 60]]}]
Formula
With D=n^2+4, a(n) equals the number of pairs (h,k) with |k| < sqrt(D), k^2 congruent to D (mod 4), h > (sqrt(D) - k)/2, h exactly dividing (D-k^2)/4.
Comments