A257011 Number of sequences of positive integers with length 4 and alternant equal to n.
0, 0, 1, 2, 3, 6, 5, 8, 11, 10, 10, 20, 11, 16, 21, 24, 15, 26, 23, 28, 31, 22, 24, 49, 27, 36, 33, 36, 33, 52, 33, 46, 51, 42, 41, 64, 41, 38, 54, 74, 43, 64, 44, 66, 63, 56, 57, 88, 59, 58, 79, 60, 52, 96, 61, 92, 69, 68, 72, 110
Offset: 1
Keywords
Examples
For n=5, the a(5)=3 sequences with alternant 5 and length 4 are (1,3,1,1), (1,2,2,1), and (1,1,3,1).
Links
- B. R. Smith, Reducing quadratic forms by kneading sequences J. Int. Seq., 17 (2014) 14.11.8.
Programs
-
Mathematica
Length4Q[x_, y_] := Module[{l = ContinuedFraction[(x[[2]] + 2*x[[1]] + y)/(2*x[[1]])]}, If[EvenQ[Length[l]], Return[Length[l] == 4], If[Last[l] == 1, Return[Length[l] - 1 == 4], Return[Length[l] + 1 == 4]]]]; Table[Length[ Select[Flatten[ Select[ Table[{a, k}, {k, Select[Range[Ceiling[-Sqrt[n^2 + 4]], Floor[Sqrt[n^2 + 4]]], Mod[# - n^2 - 4, 2] == 0 &]}, {a, Select[Divisors[(n^2 + 4 - k^2)/4], # > (Sqrt[n^2 + 4] - k)/2 &]}], UnsameQ[#, {}] &], 1], Length4Q[#, n] &]], {n, 1, 60}]
Comments