This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257012 #4 Apr 20 2015 20:58:01 %S A257012 0,0,1,2,3,5,5,10,8,11,11,19,15,19,17,27,17,36,17,43,27,29,31,54,30, %T A257012 41,45,63,29,57,33,75,49,59,47,96,39,79,57,84,61,81,49,97,81,85,47, %U A257012 150,64,105,75,101,69,123,77,141,81,103,71,189,75,119,121,137,82,143,85,183,101,129,93,211,89,129,131,187,116,201 %N A257012 Number of sequences of positive integers with length 5 and alternant equal to n. %C A257012 See A257009 for the definition of the alternant of a sequence. The number of sequences of length 1 with given alternant value n is 1, while the number of sequences of length 2 with given alternant value n is d(n), the number of divisors of n (see A000005). %H A257012 B. R. Smith, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Smith/smith5.html">Reducing quadratic forms by kneading sequences</a> J. Int. Seq., 17 (2014) 14.11.8. %e A257012 The a(7) = 3 sequences with length 5 and alternant 7 are (1,1,1,3,1), (1,2,1,2,1), and (1,3,1,1,1). %t A257012 Length5Q[x_, y_] := %t A257012 Module[{l = ContinuedFraction[(x[[2]] + 2*x[[1]] + y)/(2*x[[1]])]}, %t A257012 If[OddQ[Length[l]], Return[Length[l] == 5], %t A257012 If[Last[l] == 1, Return[Length[l] - 1 == 5], Return[Length[l] + 1 == 5]]]]; %t A257012 Table[Length[ %t A257012 Select[Flatten[ %t A257012 Select[ %t A257012 Table[{a, k}, {k, %t A257012 Select[Range[Ceiling[-Sqrt[n^2 - 4]], Floor[Sqrt[n^2 - 4]]], %t A257012 Mod[# - n^2 + 4, 2] == 0 &]}, {a, %t A257012 Select[Divisors[(n^2 - 4 - k^2)/4], # > (Sqrt[n^2 - 4] - k)/2 &]}], %t A257012 UnsameQ[#, {}] &], 1], Length5Q[#, n] &]], {n, 3, 80}] %Y A257012 Cf. A257009, A257010, A257011, A257013, A000012, A000005 %K A257012 nonn %O A257012 1,4 %A A257012 _Barry R. Smith_, Apr 19 2015