This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257013 #7 May 20 2025 08:32:14 %S A257013 0,0,0,0,0,0,0,1,0,2,0,5,0,4,4,9,0,12,1,13,10,8,4,33,4,14,12,21,4,44, %T A257013 2,33,22,24,12,62,8,16,29,63,2,64,4,57,52,26,10,111,21,40,48,45,8,106, %U A257013 26,94,40,46,18,164,21,40,61,97,40,118,12,87,65,104,14,221,14,52,116,88,30,146,21,157 %N A257013 Number of sequences of positive integers with length 6 and alternant equal to n. %C A257013 See A257009 for the definition of the alternant of a sequence. The number of sequences of length 1 with given alternant value n is 1, while the number of sequences of length 2 with given alternant value n is d(n), the number of divisors of n (see A000005). %H A257013 B. R. Smith, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Smith/smith5.html">Reducing quadratic forms by kneading sequences</a> J. Int. Seq., 17 (2014) 14.11.8. %e A257013 For n=14, the a(14)=4 sequences with alternant 14 and length 6 are (1,1,1,1,4,1), (1,2,1,1,3,1), (1,3,1,1,2,1), and (1,4,1,1,1,1). %t A257013 Length6Q[x_, y_] := %t A257013 Module[{l = ContinuedFraction[(x[[2]] + 2*x[[1]] + y)/(2*x[[1]])]}, %t A257013 If[EvenQ[Length[l]], Return[Length[l] == 6], %t A257013 If[Last[l] == 1, Return[Length[l] - 1 == 6], Return[Length[l] + 1 == 6]]]] %t A257013 Table[Length[ %t A257013 Select[Flatten[ %t A257013 Select[ %t A257013 Table[{a, k}, {k, %t A257013 Select[Range[Ceiling[-Sqrt[n^2 + 4]], Floor[Sqrt[n^2 + 4]]], %t A257013 Mod[# - n^2 - 4, 2] == 0 &]}, {a, %t A257013 Select[Divisors[(n^2 + 4 - k^2)/4], # > (Sqrt[n^2 + 4] - k)/2 &]}], %t A257013 UnsameQ[#, {}] &], 1], Length6Q[#, n] &]], {n, 1, 80}] %Y A257013 Cf. A257009, A257010, A257011, A257012, A000012, A000005 %K A257013 nonn %O A257013 1,10 %A A257013 _Barry R. Smith_, Apr 19 2015