A257018 Rectangular array read by columns: row i shows the numbers whose greedy quarter-squares representation consists of i terms, for i = 1, 2, 3, 4.
0, 3, 15, 255, 1, 5, 19, 271, 2, 7, 23, 287, 4, 8, 28, 304, 6, 10, 33, 321, 9, 11, 35, 339, 12, 13, 39, 357, 16, 14, 41, 376, 20, 17, 45, 395, 25, 18, 47, 399, 30, 21, 52, 415, 36, 22, 54, 419, 42, 24, 59, 435, 49, 26, 61, 439, 56, 27, 63, 456, 64, 29, 67
Offset: 1
Examples
The array: 0 1 2 4 6 9 12 ... 3 5 7 8 10 11 13 ... 15 19 23 28 33 35 39 ... 255 271 287 304 321 339 357 ... Quarter-square representations: r(0) = 0, r(1) = 1, r(2) = 2, r(3) = 2 + 1, r(15) = 12 + 2 + 1, r(6969) = 6889 + 72 + 6 + 2.
Links
Crossrefs
Programs
-
Mathematica
z = 200; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, z}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[200]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; u = Table[Length[r[n]], {n, 0, 4 z}] (* A257023 *) TableForm[Table[Take[Flatten[-1 + Position[u, k]], 10], {k, 1, 4}]] (*A257018 array *) t = Table[Take[Flatten[-1 + Position[u, k]], 30], {k, 1, 4}]; Flatten[Table[t[[i, j]], {j, 1, 30}, {i, 1, 4}]] (*A257018 sequence *)
Comments