A257019 Numbers whose quarter-square representation consists of two terms.
3, 5, 7, 8, 10, 11, 13, 14, 17, 18, 21, 22, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 43, 44, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 76, 78, 82, 83, 85, 87, 91, 92, 94, 96, 99, 101, 102, 104, 106, 109, 111, 112, 114, 116, 119, 122, 123
Offset: 1
Examples
Quarter-square representations: r(0) = 0, one term r(1) = 1, one term r(3) = 2 + 1, two terms, so a(1) = 3
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; u = Table[Length[r[n]], {n, 0, 4 z}];(* A257023 *) Flatten[-1 + Position[u, 1]]; (* A002620 *) Flatten[-1 + Position[u, 2]]; (* A257019 *) Flatten[-1 + Position[u, 3]]; (* A257020 *) Flatten[-1 + Position[u, 4]]; (* A257021 *)
Comments