A257020 Numbers whose quarter-square representation consists of three terms.
15, 19, 23, 28, 33, 35, 39, 41, 45, 47, 52, 54, 59, 61, 63, 67, 69, 71, 75, 77, 79, 80, 84, 86, 88, 89, 93, 95, 97, 98, 103, 105, 107, 108, 113, 115, 117, 118, 120, 124, 126, 128, 129, 131, 135, 137, 139, 140, 142, 143, 147, 149, 151, 152, 154, 155, 159, 161
Offset: 1
Examples
Quarter-square representations: r(15) = 12 + 2 + 1, three terms; a(1) = 15 r(19) = 16 + 2 + 1, three terms; a(2) = 19
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; u = Table[Length[r[n]], {n, 0, 4 z}];(* A257023 *) Flatten[-1 + Position[u, 1]]; (* A002620 *) Flatten[-1 + Position[u, 2]]; (* A257019 *) Flatten[-1 + Position[u, 3]]; (* A257020 *) Flatten[-1 + Position[u, 4]]; (* A257021 *)
Comments