A257022 Trace of n in the quarter-sum representation of n.
0, 1, 2, 1, 4, 1, 6, 1, 2, 9, 1, 2, 12, 1, 2, 1, 16, 1, 2, 1, 20, 1, 2, 1, 4, 25, 1, 2, 1, 4, 30, 1, 2, 1, 4, 1, 36, 1, 2, 1, 4, 1, 42, 1, 2, 1, 4, 1, 6, 49, 1, 2, 1, 4, 1, 6, 56, 1, 2, 1, 4, 1, 6, 1, 64, 1, 2, 1, 4, 1, 6, 1, 72, 1, 2, 1, 4, 1, 6, 1, 2, 81
Offset: 0
Examples
Quarter-square representations: r(0) = 0, so a(0) = 0 r(1) = 1, so a(1) = 1 r(2) = 2, so a(2) = 2 r(3) = 2 + 1, so a(3) = 1
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[200]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; Table[Last[r[n]], {n, 0, 3 z}] (* A257022 *)
Comments