A257023 Number of terms in the quarter-sum representation of n.
1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 1, 2, 2, 3, 2, 3, 2, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 1, 2, 2, 3, 2
Offset: 0
Examples
Quarter-square representations: r(0) = 0, so a(0) = 1 r(3) = 2 + 1, so a(3) = 2
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[200]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; Table[Length[r[n]], {n, 0, 3 z}] (* A257022 *)
Comments