A257024 Number of squares in the quarter-sum representation of n.
1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 1, 2, 0, 1, 2, 1, 2, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 2, 2
Offset: 0
Examples
Quarter-square representations: r(5) = 4 + 1, so a(5) = 2; r(11) = 9 + 2, so a(11) = 1; r(35) = 30 + 4 + 1, so a(35) = 2.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; Take[g, 100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]] sq = Table[n^2, {n, 0, 1000}]; t = Table[r[n], {n, 0, z}] u = Table[Length[Intersection[r[n], sq]], {n, 0, 250}]
Comments