cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257050 Array a(m,n) (m>0, n>=0) of quotient of de Bruijn alternating sums of m-th powers of binomial coefficients, listed by ascending antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 15, 1, 0, 1, 15, 131, 84, 1, 0, 1, 31, 955, 3067, 495, 1, 0, 1, 63, 6411, 84840, 79459, 3003, 1, 0, 1, 127, 41195, 2065603, 8765595, 2181257, 18564, 1, 0, 1, 255, 258091, 46942056, 813289963, 987430015, 62165039, 116280, 1, 0
Offset: 1

Views

Author

Jean-François Alcover, Apr 15 2015

Keywords

Examples

			With S(s,n) = de Bruijn sum, array begins:
1,  0,   0,     0,       0,         0,            0, ...
1,  1,   1,     1,       1,         1,            1, ...
1,  3,  15,    84,     495,      3003,        18564, ... = A005809 = S(3,n)/S(2,n)
1,  7, 131,  3067,   79459,   2181257,     62165039, ... = A099601 = S(4,n)/S(2,n)
1, 15, 955, 84840, 8765595, 987430015, 117643216600, ... = S(5,n)/S(2,n)
...
Second column is A000225 (Mersenne numbers).
		

Crossrefs

Programs

  • Mathematica
    a[m_, n_] := Sum[(-1)^k*Binomial[2*n, n+k]^m, {k, -n, n}]/Binomial[2*n, n]; Table[a[m-n, n], {m, 1, 10}, {n, 0, m-1}] // Flatten

Formula

a(m, n) = (Sum_{k=-n..n} (-1)^k*binomial(2*n, n+k)^m)/binomial(2*n, n).