This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257053 #4 Apr 15 2015 13:31:50 %S A257053 2,3,4,1,4,3,9,2,9,4,16,1,16,3,16,4,3,25,4,25,4,2,36,1,36,4,1,36,4,3, %T A257053 36,9,2,49,4,49,9,1,49,9,3,64,3,64,4,3,64,9,64,9,4,2,81,2,81,4,3,1,81, %U A257053 16,100,1,100,3,100,4,3,100,9,100,9,4,121,4,2 %N A257053 Primes in enhanced squares representation, cf. A256913. %C A257053 A257070(n) = length of n-th row; %C A257053 T(n,k) = A256913(A000040(n),k), k = 0..A257070(n)-1; %C A257053 T(n,0) = A065730(n) for n > 2; %C A257053 T(n,A257071(n)-1) = A257070(n). %H A257053 Reinhard Zumkeller, <a href="/A257053/b257053.txt">Rows n = 1..100 of triangle, flattened</a> %e A257053 . n | prime(n) | ESR, row sum = prime(n) %e A257053 . ---+----------+------------------------- %e A257053 . 1 | 2 | [2] %e A257053 . 2 | 3 | [3] %e A257053 . 3 | 5 | [4, 1] %e A257053 . 4 | 7 | [4, 3] %e A257053 . 5 | 11 | [9, 2] %e A257053 . 6 | 13 | [9, 4] %e A257053 . 7 | 17 | [16, 1] %e A257053 . 8 | 19 | [16, 3] %e A257053 . 9 | 23 | [16, 4, 3] %e A257053 . 10 | 29 | [25, 4] %e A257053 . 11 | 31 | [25, 4, 2] %e A257053 . 12 | 37 | [36, 1] %e A257053 . 13 | 41 | [36, 4, 1] %e A257053 . 14 | 43 | [36, 4, 3] %e A257053 . 15 | 47 | [36, 9, 2] %e A257053 . 16 | 53 | [49, 4] %e A257053 . 17 | 59 | [49, 9, 1] %e A257053 . 18 | 61 | [49, 9, 3] %e A257053 . 19 | 67 | [64, 3] %e A257053 . 20 | 71 | [64, 4, 3] %e A257053 . 21 | 73 | [64, 9] %e A257053 . 22 | 79 | [64, 9, 4, 2] %e A257053 . 23 | 83 | [81, 2] %e A257053 . 24 | 89 | [81, 4, 3, 1] %e A257053 . 25 | 97 | [81, 16] %o A257053 (Haskell) %o A257053 a257053 n k = a257053_tabf !! (n-1) !! k %o A257053 a257053_row n = a257053_tabf !! (n-1) %o A257053 a257053_tabf = map (a256913_row . fromIntegral) a000040_list %Y A257053 %Cf. A256913, A000040, A065730, A257070 (traces), A257071 (row lengths). %K A257053 nonn,tabf %O A257053 1,1 %A A257053 _Reinhard Zumkeller_, Apr 15 2015