A257057 Numbers k such that (# squares) = (# nonsquares) in the quarter-squares representation of k.
3, 7, 11, 13, 18, 21, 24, 27, 31, 34, 38, 43, 46, 51, 55, 57, 60, 66, 70, 73, 76, 83, 87, 91, 94, 99, 102, 106, 111, 114, 119, 123, 127, 133, 136, 141, 146, 150, 157, 160, 165, 171, 175, 181, 183, 186, 191, 198, 202, 208, 211, 214, 219, 227, 231, 237, 241
Offset: 1
Examples
Quarter-square representations: r(0) = 0 r(1) = 1 r(2) = 2 r(3) = 2 + 1, so that a(1) = 3
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 400; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; u = Table[Length[r[n]], {n, 0, z}] (* A257023 *) v = Table[Length[Intersection[r[n], Table[n^2, {n, 0, 1000}]]], {n, 0, z}] (* A257024 *) -1 + Select[Range[0, z], 2 v[[#]] < u[[#]] &] (* A257056 *) -1 + Select[Range[0, z], 2 v[[#]] == u[[#]] &] (* A257057 *) -1 + Select[Range[0, z], 2 v[[#]] > u[[#]] &] (* A257058 *)
Comments