A257058 Numbers k such that (# squares) > (# nonsquares) in the quarter-squares representation of k.
0, 1, 4, 5, 9, 10, 16, 17, 19, 25, 26, 28, 29, 35, 36, 37, 39, 40, 41, 47, 49, 50, 52, 53, 54, 61, 64, 65, 67, 68, 69, 71, 77, 81, 82, 84, 85, 86, 88, 95, 100, 101, 103, 104, 105, 107, 109, 115, 120, 121, 122, 124, 125, 126, 128, 130, 131, 137, 142, 144, 145
Offset: 1
Examples
Quarter-square representations: r(0) = 0, so a(1) = 0 r(1) = 1, so a(2) = 1 r(2) = 2 r(3) = 2 + 1 r(4) = 4, so a(3) = 4
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 400; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}]; s[n_] := Table[b[n], {k, b[n + 1] - b[n]}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; u = Table[Length[r[n]], {n, 0, z}] (* A257023 *) v = Table[Length[Intersection[r[n], Table[n^2, {n, 0, 1000}]]], {n, 0, z}] (* A257024 *) -1 + Select[Range[0, z], 2 v[[#]] < u[[#]] &] (* A257056 *) -1 + Select[Range[0, z], 2 v[[#]] == u[[#]] &] (* A257057 *) -1 + Select[Range[0, z], 2 v[[#]] > u[[#]] &] (* A257058 *)
Comments