This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257067 #6 Jun 02 2025 11:46:42 %S A257067 3,20,113,243,1024,1636,3866,6599,12387,16807,32768,41744,66291,90598, %T A257067 133205,161051,248832,292932,401910,501113,661703,759375,1048576, %U A257067 1185856,1507979,1788296,2222649,2476099,3200000,3532100,4287258,4926235,5889323 %N A257067 Number of length 5 1..(n+1) arrays with every leading partial sum divisible by 2 or 3. %C A257067 Row 5 of A257062 %H A257067 R. H. Hardin, <a href="/A257067/b257067.txt">Table of n, a(n) for n = 1..210</a> %F A257067 Empirical: a(n) = a(n-2) +a(n-3) -a(n-5) +4*a(n-6) -4*a(n-8) -4*a(n-9) +4*a(n-11) -6*a(n-12) +6*a(n-14) +6*a(n-15) -6*a(n-17) +4*a(n-18) -4*a(n-20) -4*a(n-21) +4*a(n-23) -a(n-24) +a(n-26) +a(n-27) -a(n-29) %F A257067 Empirical for n mod 6 = 0: a(n) = (32/243)*n^5 + (32/81)*n^4 + (4/9)*n^3 + (1/9)*n^2 %F A257067 Empirical for n mod 6 = 1: a(n) = (32/243)*n^5 + (128/243)*n^4 + (487/486)*n^3 + (853/972)*n^2 + (34/243)*n + (313/972) %F A257067 Empirical for n mod 6 = 2: a(n) = (32/243)*n^5 + (112/243)*n^4 + (355/486)*n^3 + (145/486)*n^2 + (125/486)*n + (209/243) %F A257067 Empirical for n mod 6 = 3: a(n) = (32/243)*n^5 + (16/27)*n^4 + (8/9)*n^3 + (8/9)*n^2 + (1/3)*n %F A257067 Empirical for n mod 6 = 4: a(n) = (32/243)*n^5 + (80/243)*n^4 + (80/243)*n^3 + (40/243)*n^2 + (10/243)*n + (1/243) %F A257067 Empirical for n mod 6 = 5: a(n) = (32/243)*n^5 + (160/243)*n^4 + (320/243)*n^3 + (320/243)*n^2 + (160/243)*n + (32/243) %e A257067 Some solutions for n=4 %e A257067 ..3....2....2....3....3....2....4....4....2....3....2....4....4....4....3....2 %e A257067 ..5....4....1....3....3....1....5....5....4....3....1....4....5....4....1....1 %e A257067 ..4....3....1....3....4....5....3....3....3....2....1....2....3....2....2....1 %e A257067 ..2....5....2....1....5....2....4....3....1....1....4....4....2....5....2....4 %e A257067 ..1....2....2....4....3....5....4....3....5....5....1....2....1....5....2....2 %Y A257067 Cf. A257062 %K A257067 nonn %O A257067 1,1 %A A257067 _R. H. Hardin_, Apr 15 2015