This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257095 #7 Feb 16 2025 08:33:25 %S A257095 1,6,0,8,3,5,9,4,2,1,9,8,5,5,4,5,6,5,9,2,3,1,9,4,1,5,2,3,1,6,3,7,9,3, %T A257095 8,1,6,4,9,2,2,5,1,5,1,3,1,4,1,8,4,2,6,7,7,2,3,9,5,3,1,1,0,6,5,0,5,3, %U A257095 9,2,5,4,1,0,6,0,1,7,2,8,4,3,8,7,3,7,8,8,7,4,3,7,8,2,0,7,6,0,2,4,8,8,9,1 %N A257095 Decimal expansion of Gamma(11/4). %H A257095 David H. Bailey and Simon Plouffe, <a href="http://docserver.carma.newcastle.edu.au/156/2/96_062-Bailey-Plouffe.pdf">Recognizing Numerical Constants</a>, (1995). %H A257095 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a> %H A257095 Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function">Particular values of the Gamma function</a> %F A257095 (21/16)*Pi*sqrt(2)/Gamma(1/4). %F A257095 Also equals Integral_{0..infinity} t^(7/4)*exp(-t) dt. %e A257095 1.6083594219855456592319415231637938164922515131418426772395311... %t A257095 RealDigits[Gamma[11/4], 10, 104] // First %o A257095 (PARI) gamma(11/4) \\ _Michel Marcus_, Apr 16 2015 %Y A257095 Cf. A068466 (Gamma(1/4)), A068465 (3/4), A068467 (5/4), A203130 (7/4), A257094 (9/4). %K A257095 nonn,cons,easy %O A257095 1,2 %A A257095 _Jean-François Alcover_, Apr 16 2015