A257096 Decimal expansion of I3(u,v) = A248897/AG3(u,v) for u=1, v=2.
7, 2, 4, 2, 3, 5, 6, 3, 3, 8, 0, 0, 9, 7, 1, 4, 2, 9, 5, 3, 8, 9, 2, 3, 3, 3, 1, 1, 1, 1, 5, 0, 1, 8, 3, 8, 3, 3, 0, 9, 7, 6, 3, 4, 4, 6, 8, 3, 2, 9, 5, 5, 3, 0, 4, 9, 8, 9, 2, 4, 7, 6, 0, 7, 2, 5, 1, 1, 4, 3, 5, 6, 4, 7, 3, 6, 3, 5, 5, 8, 5, 5, 2, 3, 5, 8, 4, 6, 2, 2, 3, 9, 6, 1, 3, 9, 4, 0, 3, 8, 9, 3, 8, 5, 4
Offset: 0
Examples
0.724235633800971429538923331111501838330976344683295530...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- J. M. Borwein, P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Transactions of the AMS, 323 (1991), 691-701.
- Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean, Equations 26-32.
Programs
-
Mathematica
RealDigits[ NIntegrate[(x/((1 + x^3) (8 + x^3)^2)^(1/3)), {x, 0, Infinity}, AccuracyGoal -> 111, WorkingPrecision -> 111]][[1]] (* Robert G. Wilson v, Apr 16 2015 *)
-
PARI
I3(u,v)={my(an=u+0.0,bn=v+0.0,anext=0.0,ncyc=0, eps=2*10^(-default(realprecision))); while(1, anext=(an+2*bn)/3; bn=(bn*(an*an+an*bn+bn*bn)/3)^(1/3); an=anext; ncyc++; if((ncyc>3)&&(abs(an-bn)
Formula
Equals Integral[x=0,inf](x/((1+x^3)*(8+x^3)^2)^(1/3)).
Comments