cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257101 From fifth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is 1/zeta; sequence gives numerator of b(n).

Table of values

n a(n)
1 1
2 -1
3 -1
4 -2
5 -1
6 1
7 -1
8 -6
9 -2
10 1
11 -1
12 2
13 -1
14 1
15 1
16 -21
17 -1
18 2
19 -1
20 2
21 1
22 1
23 -1
24 6
25 -2
26 1
27 -6
28 2
29 -1
30 -1
31 -1
32 -399
33 1
34 1
35 1
36 4
37 -1
38 1
39 1
40 6
41 -1
42 -1
43 -1
44 2
45 2
46 1
47 -1
48 21
49 -2
50 2
51 1
52 2
53 -1
54 6
55 1
56 6
57 1
58 1
59 -1
60 -2
61 -1
62 1
63 2
64 -1596
65 1
66 -1
67 -1
68 2
69 1
70 -1
71 -1
72 12
73 -1
74 1
75 2
76 2
77 1
78 -1
79 -1
80 21
81 -21
82 1
83 -1
84 -2
85 1
86 1
87 1
88 6
89 -1
90 -2
91 1
92 2
93 1
94 1
95 1
96 399
97 -1
98 2
99 2
100 4

List of values

[1, -1, -1, -2, -1, 1, -1, -6, -2, 1, -1, 2, -1, 1, 1, -21, -1, 2, -1, 2, 1, 1, -1, 6, -2, 1, -6, 2, -1, -1, -1, -399, 1, 1, 1, 4, -1, 1, 1, 6, -1, -1, -1, 2, 2, 1, -1, 21, -2, 2, 1, 2, -1, 6, 1, 6, 1, 1, -1, -2, -1, 1, 2, -1596, 1, -1, -1, 2, 1, -1, -1, 12, -1, 1, 2, 2, 1, -1, -1, 21, -21, 1, -1, -2, 1, 1, 1, 6, -1, -2, 1, 2, 1, 1, 1, 399, -1, 2, 2, 4]