This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257108 #34 Jan 22 2022 23:41:25 %S A257108 2,3,7,47,241,2887,57119,217069,37923937,211014919,221167421,221167421 %N A257108 Smallest prime p such that none of p+1, p+2, ..., p+n are squarefree. %C A257108 a(10) = 221167421. %C A257108 From _Robert Israel_, Apr 23 2015: (Start) %C A257108 a(n) >= A020754(n), with equality when A020754(n) is prime. This occurs for n = 2,3,4,5,8 and 11. %C A257108 Each a(n) exists: given distinct primes q_j, j=1..n, such that q_j does not divide j, by Dirichlet's theorem there is some prime in the arithmetic progression %C A257108 {x: x == -j (mod q_j^2) for j=1..n}. %C A257108 (End) %F A257108 a(n) << A002110(n)^10 by the CRT and Xylouris' improvement to Linnik's theorem. - _Charles R Greathouse IV_, Apr 29 2015 %e A257108 47 is a(3) because none of 2^2*12 = 48, 7^2 = 49, 2*5^2 = 50 is squarefree. %p A257108 p:= 2: %p A257108 A[0]:= 2: %p A257108 for n from 1 to 8 do %p A257108 while ormap(numtheory:-issqrfree, [seq(p+i,i=1..n)]) do p:= nextprime(p) od: %p A257108 A[n]:= p; %p A257108 od: %p A257108 seq(A[i],i=1..8); # _Robert Israel_, Apr 23 2015 %t A257108 lst={2};Do[If[Union[SquareFreeQ/@Range[Prime[n]+1,Prime[n]+Length[lst]]]=={False},AppendTo[lst,Prime[n]]],{n,10^5}];lst (* _Ivan N. Ianakiev_, May 02 2015 *) %o A257108 (PARI) a(n)=forprime(p=2, , for(k=1, n, if(issquarefree(p+k), next(2))); return(p)) \\ _Charles R Greathouse IV_, Apr 29 2015 %Y A257108 Cf. A020754. %K A257108 nonn,more %O A257108 0,1 %A A257108 _Juri-Stepan Gerasimov_, Apr 23 2015 %E A257108 a(8) from _Robert Israel_, Apr 23 2015 %E A257108 a(9)-a(11) from _Charles R Greathouse IV_, Apr 29 2015