This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257117 #33 Oct 11 2024 16:11:01 %S A257117 37,109,193,229,277,313,349,389,397,401,449,457,509,613,661,673,701, %T A257117 757,761,769,797,853,929,937,997,1009,1093,1109,1193,1201,1213,1237, %U A257117 1373,1429,1489,1549,1597,1609,1637,1669 %N A257117 Smaller of two consecutive primes each of which is the sum of two squares. %C A257117 This sequence is a subsequence of A002313 (Primes of form x^2 + y^2). %H A257117 Abhiram R Devesh, <a href="/A257117/b257117.txt">Table of n, a(n) for n = 1..1000</a> %e A257117 37 = 1^2 + 6^2 and 41 = 4^2 + 5^2, so 37 is a term. %e A257117 109 = 3^2 + 10^2 and 113 = 7^2 + 8^2, so 109 is a term. %o A257117 (Python) %o A257117 import sympy %o A257117 def sumpow(sn0, n, p): %o A257117 af=0; bf=0; an=1 %o A257117 sn1=sn0+n %o A257117 if n!=0: %o A257117 sn1=sympy.nextprime(sn0, n) %o A257117 while an**p<sn1: %o A257117 bnsq=sn1-(an**p) %o A257117 bn=sympy.ntheory.perfect_power(bnsq) %o A257117 if bn!=False and list(bn)[1]==p: %o A257117 af=an %o A257117 bf=list(bn)[0] %o A257117 an=sn1+100 %o A257117 an=an+1 %o A257117 return(af, bf) %o A257117 s0=1; pw=2 %o A257117 while s0>0: %o A257117 a0, b0=sumpow(s0, 0, pw) %o A257117 a1, b1=sumpow(s0, 1, pw) %o A257117 if a0!=0 and a1!=0: %o A257117 print(s0) %o A257117 s0=sympy.nextprime(s0) %Y A257117 Cf. A002313 (Primes of form x^2 + y^2). %K A257117 nonn,easy %O A257117 1,1 %A A257117 _Abhiram R Devesh_, Apr 25 2015