This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257118 #37 Jan 15 2025 17:48:44 %S A257118 89,389,397,449,661,757,761,929,997,1193,1201,1669,2213,2269,2293, %T A257118 2593,2609,2617,2741,3037,3041,3209,3217,3413,3433,3449,3697,3877, %U A257118 4397,4801,5189,5233,5237,5569,5689,5717,6101,6217,6389,6469,6733,6829,6833,6997,7529 %N A257118 Smallest of three consecutive prime numbers each of which is the sum of two squares. %C A257118 This sequence is a subsequence of A257117. %H A257118 Harvey P. Dale, <a href="/A257118/b257118.txt">Table of n, a(n) for n = 1..200</a> %e A257118 389 = 10^2 + 17^2, 397 = 6^2 + 19^2, and 401 = 1^2 + 20^2, so 389 is a term. %e A257118 397 = 6^2 + 19^2, 401 = 1^2 + 20^2, and 409 = 3^2 + 20^2, so 397 is a term. %t A257118 Prime/@SequencePosition[Table[If[Count[IntegerPartitions[n,{2}],_?(AllTrue[ Sqrt[#],IntegerQ]&)]>0,1,0],{n,Prime[Range[3000]]}],{1,1,1},Overlaps-> All] [[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 08 2018 *) %o A257118 (Python) %o A257118 # a(1) is not displayed. %o A257118 import sympy %o A257118 def sumpow(sn0, n, p): %o A257118 af=0; bf=0; an=1 %o A257118 sn1=sn0+n %o A257118 if n!=0: %o A257118 sn1=sympy.nextprime(sn0, n) %o A257118 while an**p<sn1: %o A257118 bnsq=sn1-(an**p) %o A257118 bn=sympy.ntheory.perfect_power(bnsq) %o A257118 if bn!=False and list(bn)[1]==p: %o A257118 af=an %o A257118 bf=list(bn)[0] %o A257118 an=sn1+100 %o A257118 an=an+1 %o A257118 return(af, bf) %o A257118 s0=1; pw=2 %o A257118 while s0>0: %o A257118 a0, b0=sumpow(s0, 0, pw) %o A257118 a1, b1=sumpow(s0, 1, pw) %o A257118 a2, b2=sumpow(s0, 2, pw) %o A257118 if a0!=0 and a1!=0 and a2!=0: %o A257118 print(s0) %o A257118 s0=sympy.nextprime(s0) %Y A257118 Cf. A064716 (Smallest member of three consecutive numbers). %Y A257118 Cf. A257117 (Smallest member of two consecutive prime numbers). %K A257118 nonn,easy %O A257118 1,1 %A A257118 _Abhiram R Devesh_, Apr 25 2015 %E A257118 Corrected and extended by and prior b-file replaced by _Harvey P. Dale_, Jul 08 2018