This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257146 #13 Sep 12 2016 12:45:26 %S A257146 60,168,1092,2448,5616,6072,25308,29120,32736,39732,51888,74412, %T A257146 150348,194472,285852,546312,612468,1285608,1934868,2097024,2165292, %U A257146 2588772,3594432,3822588,5848428,6324552,7174332,8487168,9095592,10626828,11332452,12576732,14467068,15331992,15927348 %N A257146 Primitive non-solvable numbers: elements of A056866 not divisible by any earlier term. %C A257146 A number is solvable if and only if it is a positive multiple of a member of this sequence. %C A257146 There is 1 member of this sequence up to 10^2, 2 up to 10^3, 6 up to 10^4, 12 up to 10^5, 17 up to 10^6, 29 up to 10^7, 49 up to 10^8, 89 up to 10^9, 169 up to 10^10, 321 up to 10^11, 616 up to 10^12, 1188 up to 10^13, 2351 up to 10^14, 4679 up to 10^15, 9350 up to 10^16, 18866 up to 10^17, 38157 up to 10^18, 77534 up to 10^19, 158048 up to 10^20, 323358 up to 10^21, 663159 up to 10^22, and 1363304 up to 10^23. - _Charles R Greathouse IV_, Sep 16 2015 %H A257146 Charles R Greathouse IV, <a href="/A257146/b257146.txt">Table of n, a(n) for n = 1..10000</a> %F A257146 a(n) >> n^3 log^3 n. - _Charles R Greathouse IV_, Apr 20 2015 %o A257146 (PARI) list(lim)={ %o A257146 my(v=List(),t); %o A257146 forprime(p=2,, %o A257146 t=(4^p-1)<<p; %o A257146 if(t>lim,break); %o A257146 listput(v,t) %o A257146 ); %o A257146 forprime(p=3,, %o A257146 t=3^p*(9^p-1)/2; %o A257146 if(t>lim,break); %o A257146 listput(v,t) %o A257146 ); %o A257146 forprime(p=7,, %o A257146 t=p*(p^2-1)/2; %o A257146 if(t>lim,break); %o A257146 listput(v,t) %o A257146 ); %o A257146 forprime(p=3,, %o A257146 t=4^p*(4^p+1)*(2^p-1); %o A257146 if(t>lim,break); %o A257146 listput(v,t) %o A257146 ); %o A257146 if(lim>=5616, listput(v, 5616)); %o A257146 v=Set(v); %o A257146 for(i=1,#v, %o A257146 if(v[i]==60 && i>1, next); \\ see below %o A257146 for(j=i+1,#v, %o A257146 if(v[j]%v[i]==0, v[j]=60) \\ delete values by setting to v[1] %o A257146 ) %o A257146 ); %o A257146 Set(v); \\ remove duplicates to combine all 60s %o A257146 } %Y A257146 Cf. A056866. %K A257146 nonn %O A257146 1,1 %A A257146 _Charles R Greathouse IV_, Apr 16 2015