cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257171 Sum of numbers on n-th segment of Ulam's spiral.

Original entry on oeis.org

1, 5, 9, 13, 27, 36, 62, 78, 120, 145, 207, 243, 329, 378, 492, 556, 702, 783, 965, 1065, 1287, 1408, 1674, 1818, 2132, 2301, 2667, 2863, 3285, 3510, 3992, 4248, 4794, 5083, 5697, 6021, 6707, 7068, 7830, 8230, 9072, 9513, 10439, 10923, 11937, 12466, 13572, 14148, 15350
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 17 2015

Keywords

Comments

From Ulam's spiral, consider successive segments s(0) = [1]; s(1) = [2, 3]; s(2) = [4, 5]; s(3) = [6, 7]; s(4) = [8, 9, 10] and so on. a(n) is sum of numbers of the segment s(n). The first differences are A000290 interleaved with 2*A002061. See illustration in the links.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{t = {5, 9}}, For[i = 3, i <= n, i++, If[OddQ@ i, AppendTo[t, t[[i - 1]] + ((i - 1)/2 + 1)^2], AppendTo[t, t[[i - 1]] + 2 ((i - 1)^2/4 + (i - 1) + 7/4)]]]; {1}~Join~t]; f@ 48(* Michael De Vlieger, Apr 17 2015 *)
  • PARI
    a(n) = if(n<=0, 1, if(n<=1, 5, if(n<=2, 9, if(Mod(n,2)==0, a(n-1)+2*((n-1)^2/4+(n-1)+7/4), a(n-1)+((n-1)/2+1)^2))))
    for (n=0, 100, print1(a(n),", "))
    
  • PARI
    Vec((2*x^8-3*x^7-5*x^6+9*x^5+5*x^4-8*x^3+x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Apr 18 2015

Formula

a(0) = 1; a(1) = 5; a(2) = 9; for n >= 3, a(n) = a(n-1)+((n-1)/2+1)^2, if n = even; otherwise a(n) = a(n-1)+2*((n-1)^2/4+(n-1)+7/4).
From Colin Barker, Apr 17 2015: (Start)
a(n) = (n^3+5*n^2+14*n+16)/8 for n even and n>1.
a(n) = (n^3+4*n^2+11*n+8)/8 for n odd and n>1.
G.f.: (2*x^8-3*x^7-5*x^6+9*x^5+5*x^4-8*x^3+x^2+4*x+1) / ((x-1)^4*(x+1)^3).
(End)