cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257172 Consider numbers n = concat(w,x,y,z) such that w*x*y*z | n. Leading zeros in x, y and z allowed. Sequence lists numbers that admit at least two such concatenations.

Original entry on oeis.org

11424, 13248, 14112, 16128, 16632, 17136, 18144, 41328, 91728, 101112, 102144, 102816, 104832, 106272, 111012, 111375, 112288, 112896, 114048, 114240, 114912, 116160, 116928, 123120, 132480, 140112, 141120, 161280, 166320, 171171, 171360, 181440, 203112, 204288, 204336, 220416, 231012, 233772, 239616
Offset: 1

Views

Author

Keywords

Examples

			11424 / (1*1*4*24)=119, 11424 / (1*1*42*4)=68 and 11424 / (1 14*2*4)  but 11424 / (11*4*2*4) is 357/11, not an integer. So 11424 is the concatenation of three sets of four integers whose products divide 11424.
		

Crossrefs

Cf. A256518.

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,ab,b,c,cd,d,i,j,k,m,n,v,w,z;
    v:=array(1..10, 1..4); w:=[]; for n from 1 to q do j:=0;
    for i from 1 to ilog10(n) do c:=(n mod 10^i); ab:=trunc(n/10^i);
    for k from 1 to ilog10(ab) do d:=(ab mod 10^k); cd:=trunc(ab/10^k);
    for z from 1 to ilog10(cd) do a:=trunc(cd/10^z); b:=cd-a*10^z;
    if a*b*c*d>0 then if type(n/(a*b*c*d), integer) then j:=j+1;
    w:=sort([a,b,c,d]); for m from 1 to 4 do v[j,m]:=w[m]; od;
    for m from 1 to j-1 do if v[m,1]=v[j,1] and v[m,2]=v[j,2] and v[m,3]=v[j,3] and v[m,4]=v[j,4]
    then j:=j-1; break; fi; od; fi; fi; od; od; od;
    if j>1 then print(n); fi; od; end: P(10^9);
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@ n}, lng = Length@ id; t = Times @@@ Union[ Sort /@ Partition[ Flatten@ Table[{FromDigits@ Take[id, {1, i}], FromDigits@ Take[id, {i + 1, j}], FromDigits@ Take[id, {j + 1, k}], FromDigits@ Take[id, {k + 1, lng}]}, {i, 1, lng - 3}, {j, i + 1, lng - 2}, {k, j + 1, lng - 1}], 4]]; Count[IntegerQ /@ (n/t), True] > 1]; k = 1000; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst