This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257180 #22 Feb 22 2022 10:28:32 %S A257180 1,3,3,9,24,9,27,141,141,27,81,726,1410,726,81,243,3471,11406,11406, %T A257180 3471,243,729,15828,81327,136872,81327,15828,729,2187,69873,533259, %U A257180 1390521,1390521,533259,69873,2187,6561,301362,3295152,12609198,19467294,12609198,3295152,301362,6561,19683,1277619,19489380,105311556,237144642,237144642,105311556,19489380,1277619,19683 %N A257180 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3. %H A257180 G. C. Greubel, <a href="/A257180/b257180.txt">Rows n = 0..50 of the triangle, flattened</a> %F A257180 T(n,k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3. %F A257180 Sum_{k=0..n} T(n, k) = A001725(n+5). %F A257180 From _G. C. Greubel_, Feb 22 2022: (Start) %F A257180 t(k, n) = t(n, k). %F A257180 T(n, n-k) = T(n, k). %F A257180 t(0, n) = T(n, 0) = A000244(n). (End) %e A257180 Array t(n,k) begins as: %e A257180 1, 3, 9, 27, 81, 243, ... A000244; %e A257180 3, 24, 141, 726, 3471, 15828, ...; %e A257180 9, 141, 1410, 11406, 81327, 533259, ...; %e A257180 27, 726, 11406, 136872, 1390521, 12609198, ...; %e A257180 81, 3471, 81327, 1390521, 19467294, 237144642, ...; %e A257180 243, 15828, 533259, 12609198, 237144642, 3794314272, ...; %e A257180 729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...; %e A257180 Triangle T(n,k) begins as: %e A257180 1; %e A257180 3, 3; %e A257180 9, 24, 9; %e A257180 27, 141, 141, 27; %e A257180 81, 726, 1410, 726, 81; %e A257180 243, 3471, 11406, 11406, 3471, 243; %e A257180 729, 15828, 81327, 136872, 81327, 15828, 729; %e A257180 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187; %e A257180 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561; %t A257180 f[n_]:= n+3; %t A257180 t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]]; %t A257180 T[n_, k_]= t[n-k, k]; %t A257180 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 22 2022 *) %o A257180 (PARI) f(x) = x + 3; %o A257180 T(n, k) = t(n-k, k); %o A257180 t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);} %o A257180 tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ _Michel Marcus_, Apr 23 2015 %o A257180 (Sage) %o A257180 def f(n): return n+3 %o A257180 @CachedFunction %o A257180 def t(n,k): %o A257180 if (n<0 or k<0): return 0 %o A257180 elif (n==0 and k==0): return 1 %o A257180 else: return f(k)*t(n-1, k) + f(n)*t(n, k-1) %o A257180 def A257627(n,k): return t(n-k,k) %o A257180 flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 22 2022 %Y A257180 Cf. A000244, A008292, A001725 (row sums), A038221, A256890, A257606. %Y A257180 Cf. A257607, A257611, A257620, A257621, A257623, A257625, A257627. %Y A257180 Similar sequences listed in A256890. %K A257180 nonn,tabl %O A257180 0,2 %A A257180 _Dale Gerdemann_, Apr 17 2015