This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257200 #36 Sep 08 2022 08:46:12 %S A257200 1,6,22,63,154,336,672,1254,2211,3718,6006,9373,14196,20944,30192, %T A257200 42636,59109,80598,108262,143451,187726,242880,310960,394290,495495, %U A257200 617526,763686,937657,1143528,1385824,1669536,2000152,2383689,2826726,3336438,3920631,4587778,5347056,6208384,7182462 %N A257200 a(n) = n*(n+1)*(n+2)*(n+3)*(n^2+3*n+26)/720. %C A257200 Antidiagonal sums of the array of 4-dimensional solid numbers shown in Table 3 of Sardelis and Valahas paper (see also Example field). %C A257200 See A257199 (second comment) for the general formula of this type of numbers: the sequence correspond to the case j = 4. %C A257200 Binomial transform of (1, 5, 11, 14, 11, 5, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Aug 26 2015 %H A257200 D. A. Sardelis and T. M. Valahas, <a href="http://arxiv.org/abs/0805.4070">On Multidimensional Pythagorean Numbers</a>, arXiv:0805.4070 [math.GM], 2008. %H A257200 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A257200 G.f.: x*(-1 + x - x^2)/(-1 + x)^7. %e A257200 Array in Comments begins: %e A257200 1, 5, 15, 35, 70, 126, 210, 330, ... %e A257200 1, 6, 20, 50, 105, 196, 336, 540, ... %e A257200 1, 7, 25, 65, 140, 266, 462, 750, ... %e A257200 1, 8, 30, 80, 175, 336, 588, 960, ... %e A257200 1, 9, 35, 95, 210, 406, 714, 1170, ... %e A257200 1, 10, 40, 110, 245, 476, 840, 1380, ... %t A257200 Table[n (n + 1) (n + 2) (n + 3) (n^2 + 3n + 26)/720, {n, 40}] %o A257200 (Magma) [n*(n+1)*(n+2)*(n+3)*(n^2+3*n+26)/720: n in [1..40]]; // _Vincenzo Librandi_, Apr 18 2015 %o A257200 (PARI) first(m)=vector(m,i,i*(i+1)*(i+2)*(i+3)*(i^2+3*i+26)/720) \\ _Anders Hellström_, Aug 26 2015 %o A257200 (PARI) Vec(x*(-1 + x - x^2)/(-1 + x)^7 + O(x^40)) \\ _Michel Marcus_, Aug 27 2015 %Y A257200 Cf. A257199, A257201. %Y A257200 See A080852 for another version of the array. %K A257200 nonn,easy %O A257200 1,2 %A A257200 _Luciano Ancora_, Apr 18 2015